import gradio as gr import model_loader import pipeline from transformers import CLIPTokenizer import torch import cv2 from download import download DEVICE = "cpu" ALLOW_CUDA = True ALLOW_MPS = False if torch.cuda.is_available() and ALLOW_CUDA: DEVICE = "cuda" elif (torch.has_mps or torch.backends.mps.is_available()) and ALLOW_MPS: DEVICE = "mps" print(f"Using device: {DEVICE}") def generate_image(prompt): tokenizer = CLIPTokenizer(r"./data/vocab.json", merges_file="./data/merges.txt") model_file = "./data/v1-5-pruned-emaonly.ckpt" models = model_loader.preload_models_from_standard_weights(model_file, DEVICE) ## TEXT TO IMAGE uncond_prompt = "" # Also known as negative prompt do_cfg = True cfg_scale = 8 # min: 1, max: 14 ## SAMPLER sampler = "ddpm" num_inference_steps = 50 seed = 42 output_image = pipeline.generate( prompt=prompt, uncond_prompt=uncond_prompt, input_image=None, strength=0.5, do_cfg=do_cfg, cfg_scale=cfg_scale, sampler_name=sampler, n_inference_steps=num_inference_steps, seed=seed, models=models, device=DEVICE, idle_device="cpu", tokenizer=tokenizer, ) image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR) return image with gr.Blocks() as demo: gr.Markdown('# Diffusion') with gr.Row(): with gr.Column(): # Add a text box prompt = gr.Textbox(lines=3, label="Prompt", placeholder="Enter a prompt") print(prompt) with gr.Column(): output_image = gr.Image(label="Generated Image") submit_button_image = gr.Button("Generate Image") submit_button_image.click(generate_image, inputs=prompt, outputs=output_image) if __name__ == "__main__": download() demo.launch()