|
import soundfile as sf |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import gradio as gr |
|
|
|
|
|
|
|
def parse_transcription(wav_file): |
|
print("hello") |
|
audio_input, sample_rate = sf.read(wav_file.name) |
|
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values |
|
|
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) |
|
return transcription |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
|
|
input_ = gr.inputs.Audio(source="microphone", type="file") |
|
gr.Interface(parse_transcription, inputs = input_, outputs="text", |
|
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False); |