import math import os import random import torch import torch.utils.data import numpy as np from librosa.util import normalize from scipy.io.wavfile import read from librosa.filters import mel as librosa_mel_fn MAX_WAV_VALUE = 32768.0 def load_wav(full_path): sampling_rate, data = read(full_path) return data, sampling_rate def dynamic_range_compression(x, C=1, clip_val=1e-5): return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) def dynamic_range_decompression(x, C=1): return np.exp(x) / C def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def mel_spectrogram( y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False ): if torch.min(y) < -1.0: print("min value is ", torch.min(y)) if torch.max(y) > 1.0: print("max value is ", torch.max(y)) global mel_basis, hann_window if fmax not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[str(fmax) + "_" + str(y.device)] = ( torch.from_numpy(mel).float().to(y.device) ) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode="reflect", normalized=False, onesided=True, ) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec) spec = spectral_normalize_torch(spec) return spec def get_dataset_filelist(a): with open(a.input_training_file, "r", encoding="utf-8") as fi: training_files = [x for x in fi.read().split("\n") if len(x) > 0] with open(a.input_validation_file, "r", encoding="utf-8") as fi: validation_files = [x for x in fi.read().split("\n") if len(x) > 0] return training_files, validation_files class MelDataset(torch.utils.data.Dataset): def __init__( self, training_files, segment_size, n_fft, num_mels, hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1, device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, ): self.audio_files = training_files random.seed(1234) if shuffle: random.shuffle(self.audio_files) self.segment_size = segment_size self.sampling_rate = sampling_rate self.split = split self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.fmax_loss = fmax_loss self.cached_wav = None self.n_cache_reuse = n_cache_reuse self._cache_ref_count = 0 self.device = device self.fine_tuning = fine_tuning self.base_mels_path = base_mels_path def __getitem__(self, index): filename = self.audio_files[index] if self._cache_ref_count == 0: audio, sampling_rate = load_wav(filename) audio = audio / MAX_WAV_VALUE if not self.fine_tuning: audio = normalize(audio) * 0.95 self.cached_wav = audio if sampling_rate != self.sampling_rate: raise ValueError( "{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate ) ) self._cache_ref_count = self.n_cache_reuse else: audio = self.cached_wav self._cache_ref_count -= 1 audio = torch.FloatTensor(audio) audio = audio.unsqueeze(0) if not self.fine_tuning: if self.split: if audio.size(1) >= self.segment_size: max_audio_start = audio.size(1) - self.segment_size audio_start = random.randint(0, max_audio_start) audio = audio[:, audio_start : audio_start + self.segment_size] else: audio = torch.nn.functional.pad( audio, (0, self.segment_size - audio.size(1)), "constant" ) mel = mel_spectrogram( audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, center=False, ) else: mel = np.load( os.path.join( self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + ".npy", ) ) mel = torch.from_numpy(mel) if len(mel.shape) < 3: mel = mel.unsqueeze(0) if self.split: frames_per_seg = math.ceil(self.segment_size / self.hop_size) if audio.size(1) >= self.segment_size: mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) mel = mel[:, :, mel_start : mel_start + frames_per_seg] audio = audio[ :, mel_start * self.hop_size : (mel_start + frames_per_seg) * self.hop_size, ] else: mel = torch.nn.functional.pad( mel, (0, frames_per_seg - mel.size(2)), "constant" ) audio = torch.nn.functional.pad( audio, (0, self.segment_size - audio.size(1)), "constant" ) mel_loss = mel_spectrogram( audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, center=False, ) return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) def __len__(self): return len(self.audio_files)