import copy import math import numpy as np import scipy import torch from torch import nn from torch.nn import functional as F import commons class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-4): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): n_dims = len(x.shape) mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) shape = [1, -1] + [1] * (n_dims - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ConvReluNorm(nn.Module): def __init__( self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout, ): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() self.conv_layers.append( nn.Conv1d( in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 ) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append( nn.Conv1d( hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2, ) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class WN(torch.nn.Module): def __init__( self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 assert hidden_channels % 2 == 0 self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = torch.nn.Conv1d( gin_channels, 2 * hidden_channels * n_layers, 1 ) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding, ) in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask=None, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) x_in = self.drop(x_in) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: x = (x + res_skip_acts[:, : self.hidden_channels, :]) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) for l in self.in_layers: torch.nn.utils.remove_weight_norm(l) for l in self.res_skip_layers: torch.nn.utils.remove_weight_norm(l) class ActNorm(nn.Module): def __init__(self, channels, ddi=False, **kwargs): super().__init__() self.channels = channels self.initialized = not ddi self.logs = nn.Parameter(torch.zeros(1, channels, 1)) self.bias = nn.Parameter(torch.zeros(1, channels, 1)) def forward(self, x, x_mask=None, reverse=False, **kwargs): if x_mask is None: x_mask = torch.ones(x.size(0), 1, x.size(2)).to( device=x.device, dtype=x.dtype ) x_len = torch.sum(x_mask, [1, 2]) if not self.initialized: self.initialize(x, x_mask) self.initialized = True if reverse: z = (x - self.bias) * torch.exp(-self.logs) * x_mask logdet = None else: z = (self.bias + torch.exp(self.logs) * x) * x_mask logdet = torch.sum(self.logs) * x_len # [b] return z, logdet def store_inverse(self): pass def set_ddi(self, ddi): self.initialized = not ddi def initialize(self, x, x_mask): with torch.no_grad(): denom = torch.sum(x_mask, [0, 2]) m = torch.sum(x * x_mask, [0, 2]) / denom m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom v = m_sq - (m ** 2) logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) bias_init = ( (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) ) logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) self.bias.data.copy_(bias_init) self.logs.data.copy_(logs_init) class InvConvNear(nn.Module): def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs): super().__init__() assert n_split % 2 == 0 self.channels = channels self.n_split = n_split self.no_jacobian = no_jacobian w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0] if torch.det(w_init) < 0: w_init[:, 0] = -1 * w_init[:, 0] self.weight = nn.Parameter(w_init) def forward(self, x, x_mask=None, reverse=False, **kwargs): b, c, t = x.size() assert c % self.n_split == 0 if x_mask is None: x_mask = 1 x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t else: x_len = torch.sum(x_mask, [1, 2]) x = x.view(b, 2, c // self.n_split, self.n_split // 2, t) x = ( x.permute(0, 1, 3, 2, 4) .contiguous() .view(b, self.n_split, c // self.n_split, t) ) if reverse: if hasattr(self, "weight_inv"): weight = self.weight_inv else: weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) logdet = None else: weight = self.weight if self.no_jacobian: logdet = 0 else: logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b] weight = weight.view(self.n_split, self.n_split, 1, 1) z = F.conv2d(x, weight) z = z.view(b, 2, self.n_split // 2, c // self.n_split, t) z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask return z, logdet def store_inverse(self): self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)