# -*- coding: utf-8 -*- """MarchMachineLearningMania2021.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1FeGm3qNqLAlrQd6R9EkuNFWy9oOlnxWy """ # Commented out IPython magic to ensure Python compatibility. import numpy as np import pandas as pd import matplotlib.pyplot as plt # %matplotlib inline from sklearn.model_selection import GroupKFold, KFold from sklearn.metrics import log_loss import lightgbm as lgb from google.colab import drive drive.mount('/content/drive') data = '/content/drive/MyDrive/MarchMachineLearningMania2021/ncaam-march-mania-2021 (1)/MDataFiles_Stage2' STAGE_1 = False MRSCResults = pd.read_csv(data + '/MRegularSeasonCompactResults.csv') MRSCResults A_w = MRSCResults[MRSCResults.WLoc == 'A']\ .groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\ .rename(columns={"WTeamID": "win_A"}) print(A_w.head()) N_w = MRSCResults[MRSCResults.WLoc == 'N']\ .groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\ .rename(columns={"WTeamID": "win_N"}) H_w = MRSCResults[MRSCResults.WLoc == 'H']\ .groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\ .rename(columns={"WTeamID": "win_H"}) win = A_w.join(N_w, how='outer').join(H_w, how='outer').fillna(0) H_l = MRSCResults[MRSCResults.WLoc == 'A']\ .groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\ .rename(columns={"LTeamID": "lost_H"}) N_l = MRSCResults[MRSCResults.WLoc == 'N']\ .groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\ .rename(columns={"LTeamID": "lost_N"}) A_l = MRSCResults[MRSCResults.WLoc == 'H']\ .groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\ .rename(columns={"LTeamID": "lost_A"}) lost = A_l.join(N_l, how='outer').join(H_l, how='outer').fillna(0) print(win) print(lost) win.index = win.index.rename(['Season', 'TeamID']) lost.index = lost.index.rename(['Season', 'TeamID']) wl = win.join(lost, how='outer').reset_index() print(wl) wl['win_pct_A'] = wl['win_A'] / (wl['win_A'] + wl['lost_A']) wl['win_pct_N'] = wl['win_N'] / (wl['win_N'] + wl['lost_N']) wl['win_pct_H'] = wl['win_H'] / (wl['win_H'] + wl['lost_H']) wl['win_pct_All'] = (wl['win_A'] + wl['win_N'] + wl['win_H']) / \ (wl['win_A'] + wl['win_N'] + wl['win_H'] + wl['lost_A']\ + wl['lost_N'] + wl['lost_H']) print(wl) del A_w, N_w, H_w, H_l, N_l, A_l, win, lost MRSCResults['relScore'] = MRSCResults.WScore - MRSCResults.LScore w_scr = MRSCResults.loc[:, ['Season', 'WTeamID', 'WScore', 'WLoc','relScore']] w_scr.columns = ['Season', 'TeamID','Score','Loc','relScore'] #print(w_scr) l_scr = MRSCResults.loc[:, ['Season', 'LTeamID', 'LScore', 'WLoc','relScore']] #print(l_scr) l_scr['WLoc'] = l_scr.WLoc.apply(lambda x: 'H' if x == 'A' else 'A' if x == 'H' else 'N') l_scr['relScore'] = -1 * l_scr.relScore l_scr.columns = ['Season', 'TeamID','Score','Loc','relScore'] #print(l_scr) wl_scr = pd.concat([w_scr,l_scr]) #print(wl_scr) A_scr = wl_scr[wl_scr.Loc == 'A'].groupby(['Season','TeamID'])\ ['Score','relScore'].mean()\ .rename(columns={"Score": "Score_A", "relScore": "relScore_A"}) #print(A_scr) N_scr = wl_scr[wl_scr.Loc == 'N'].groupby(['Season','TeamID'])\ ['Score','relScore'].mean()\ .rename(columns={"Score": "Score_N", "relScore": "relScore_N"}) H_scr = wl_scr[wl_scr.Loc == 'H'].groupby(['Season','TeamID'])\ ['Score','relScore'].mean()\ .rename(columns={"Score": "Score_H", "relScore": "relScore_H"}) All_scr = wl_scr.groupby(['Season','TeamID'])['Score','relScore']\ .mean().rename(columns={"Score": "Score_All", "relScore": "relScore_All"}) scr = A_scr.join(N_scr, how='outer').join(H_scr, how='outer')\ .join(All_scr, how='outer').fillna(0).reset_index() print(scr) del w_scr, l_scr, wl_scr, A_scr, H_scr, N_scr, All_scr MRSDetailedResults = pd.read_csv(data + '/MRegularSeasonDetailedResults.csv') MRSDetailedResults w = MRSDetailedResults.loc[:, ['Season', 'WTeamID', 'WFGM','WFGA','WFGM3' ,'WFGA3','WFTM','WFTA','WOR','WDR','WAst', 'WTO','WStl','WBlk','WPF']] w.columns = ['Season', 'TeamID', 'FGM','FGA','FGM3','FGA3','FTM','FTA','OR','DR', 'Ast','TO','Stl','Blk','PF'] #print(w) l = MRSDetailedResults.loc[:, ['Season', 'LTeamID', 'LFGM','LFGA','LFGM3', 'LFGA3','LFTM','LFTA','LOR','LDR','LAst', 'LTO','LStl','LBlk','LPF']] l.columns = ['Season', 'TeamID', 'FGM','FGA','FGM3','FGA3','FTM','FTA','OR','DR', 'Ast','TO','Stl','Blk','PF'] detail = pd.concat([w,l]) #print(detail) detail['goal_rate'] = detail.FGM / detail.FGA detail['3p_goal_rate'] = detail.FGM3 / detail.FGA3 detail['ft_goal_rate'] = detail.FTM / detail.FTA dt = detail.groupby(['Season','TeamID'])['FGM','FGA','FGM3','FGA3','FTM','FTA', 'OR','DR','Ast','TO','Stl','Blk','PF', 'goal_rate', '3p_goal_rate', 'ft_goal_rate']\ .mean().fillna(0).reset_index() print(dt) del w, l, detail MMOrdinals = pd.read_csv(data + '/MMasseyOrdinals.csv') MMOrdinals MOR_127_128 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & ((MMOrdinals.RankingDayNum == 127) \ | (MMOrdinals.RankingDayNum == 128))]\ [['Season','TeamID','OrdinalRank']] MOR_50_51 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & \ ((MMOrdinals.RankingDayNum == 50) \ | (MMOrdinals.RankingDayNum == 51))]\ [['Season','TeamID','OrdinalRank']] MOR_15_16 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & \ ((MMOrdinals.RankingDayNum == 15) \ | (MMOrdinals.RankingDayNum == 16))]\ [['Season','TeamID','OrdinalRank']] MOR_127_128 = MOR_127_128.rename(columns={'OrdinalRank':'OrdinalRank_127_128'}) #print(MOR_127_128) MOR_50_51 = MOR_50_51.rename(columns={'OrdinalRank':'OrdinalRank_50_51'}) #print(MOR_50_51) MOR_15_16 = MOR_15_16.rename(columns={'OrdinalRank':'OrdinalRank_15_16'}) #print(MOR_15_16) MOR = MOR_127_128.merge(MOR_50_51, how='left', on=['Season','TeamID'])\ .merge(MOR_15_16, how='left', on=['Season','TeamID']) #print(MOR) ## normalizing Rank values by its season maxium as it varies by seasons MOR_max = MOR.groupby('Season')['OrdinalRank_127_128','OrdinalRank_50_51', 'OrdinalRank_15_16'].max().reset_index() MOR_max.columns = ['Season', 'maxRank_127_128', 'maxRank_50_51', 'maxRank_15_16'] #print(MOR_max) MOR_tmp = MMOrdinals[(MMOrdinals.SystemName == 'MOR') \ & (MMOrdinals.RankingDayNum < 133)] #print(MOR_tmp) MOR_stats = MOR_tmp.groupby(['Season','TeamID'])['OrdinalRank']\ .agg(['max','min','std','mean']).reset_index() MOR_stats.columns = ['Season','TeamID','RankMax','RankMin','RankStd','RankMean'] #print(MOR_stats) MOR = MOR.merge(MOR_max, how='left', on='Season')\ .merge(MOR_stats, how='left', on=['Season','TeamID']) #print(MOR) MOR['OrdinalRank_127_128'] = MOR['OrdinalRank_127_128'] / MOR['maxRank_127_128'] MOR['OrdinalRank_50_51'] = MOR['OrdinalRank_50_51'] / MOR['maxRank_50_51'] MOR['OrdinalRank_15_16'] = MOR['OrdinalRank_15_16'] / MOR['maxRank_15_16'] MOR['RankTrans_50_51_to_127_128'] = MOR['OrdinalRank_127_128'] \ - MOR['OrdinalRank_50_51'] MOR['RankTrans_15_16_to_127_128'] = MOR['OrdinalRank_127_128'] \ - MOR['OrdinalRank_15_16'] wl_1 = wl.loc[:,['Season','TeamID','win_pct_A','win_pct_N', 'win_pct_H','win_pct_All']] wl_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \ else str(col) for col in wl_1.columns ] #print(wl_1) wl_2 = wl.loc[:,['Season','TeamID','win_pct_A','win_pct_N', 'win_pct_H','win_pct_All']] wl_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \ else str(col) for col in wl_2.columns ] #print(wl_2) scr_1 = scr.copy() scr_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \ else str(col) for col in scr_1.columns ] #print(scr_1) scr_2 = scr.copy() scr_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \ else str(col) for col in scr_2.columns ] #print(scr_2) dt_1 = dt.copy() dt_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \ else str(col) for col in dt_1.columns ] dt_2 = dt.copy() dt_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \ else str(col) for col in dt_2.columns ] MOR_1 = MOR.copy() MOR_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \ else str(col) for col in MOR_1.columns ] MOR_2 = MOR.copy() MOR_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \ else str(col) for col in MOR_2.columns ] TCResults = pd.read_csv(data + '/MNCAATourneyCompactResults.csv') TCResults tourney1 = TCResults.loc[:, ['Season','WTeamID','LTeamID']] tourney1.columns = ['Season','TeamID1','TeamID2'] tourney1['result'] = 1 tourney2 = TCResults.loc[:, ['Season','LTeamID','WTeamID']] tourney2.columns = ['Season','TeamID1','TeamID2'] tourney2['result'] = 0 print(TCResults) print(tourney1) print(tourney2) tourney = pd.concat([tourney1, tourney2]) print(tourney) del tourney1, tourney2 def merge_data(df): df = df.merge(wl_1, how='left', left_on=['Season','TeamID1'], right_on=['Season','TeamID']) df = df.merge(wl_2, how='left', left_on=['Season','TeamID2'], right_on=['Season','TeamID']) df = df.drop(['TeamID_x','TeamID_y'], axis=1) df = df.merge(scr_1, how='left', left_on=['Season','TeamID1'], right_on=['Season','TeamID']) df = df.merge(scr_2, how='left', left_on=['Season','TeamID2'], right_on=['Season','TeamID']) df = df.drop(['TeamID_x','TeamID_y'], axis=1) df = df.merge(dt_1, how='left', left_on=['Season','TeamID1'], right_on=['Season','TeamID']) df = df.merge(dt_2, how='left', left_on=['Season','TeamID2'], right_on=['Season','TeamID']) df = df.drop(['TeamID_x','TeamID_y'], axis=1) df = df.merge(MOR_1, how='left', left_on=['Season','TeamID1'], right_on=['Season','TeamID']) df = df.merge(MOR_2, how='left', left_on=['Season','TeamID2'], right_on=['Season','TeamID']) df = df.drop(['TeamID_x','TeamID_y'], axis=1) df['OrdinalRank_127_128_diff'] = df['OrdinalRank_127_128_1'] \ - df['OrdinalRank_127_128_2'] df['magic1'] = df['OrdinalRank_127_128_diff'] - df['RankMean_1'] df['magic2'] = df['RankMean_1'] - df['RankMean_2'] df['magic3'] = df['OrdinalRank_127_128_diff'] - df['RankMean_2'] df['magic11'] = df['OrdinalRank_127_128_diff'] * df['RankMean_1'] df['magic21'] = df['RankMean_1'] * df['RankMean_2'] df['magic31'] = df['OrdinalRank_127_128_diff'] * df['RankMean_2'] df['magic12'] = df['OrdinalRank_127_128_diff'] / df['RankMean_1'] df['magic22'] = df['RankMean_1'] / df['RankMean_2'] df['magic32'] = df['OrdinalRank_127_128_diff'] / df['RankMean_2'] df = df.fillna(-1) for col in df.columns: if (df[col] == np.inf).any() or (df[col] == -np.inf).any(): df[col][(df[col] == np.inf) | (df[col] == -np.inf)] = -1 return df tourney = merge_data(tourney) tourney = tourney.loc[tourney.Season >= 2003,:].reset_index(drop=True) if STAGE_1: tourney = tourney.loc[tourney.Season < 2015, :] if STAGE_1: MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage1.csv') else: MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage2.csv') test1 = MSampleSubmission.copy() test1['Season'] = test1.ID.apply(lambda x: int(x[0:4])) test1['TeamID1'] = test1.ID.apply(lambda x: int(x[5:9])) test1['TeamID2'] = test1.ID.apply(lambda x: int(x[10:14])) test2 = MSampleSubmission.copy() test2['Season'] = test2.ID.apply(lambda x: int(x[0:4])) test2['TeamID1'] = test2.ID.apply(lambda x: int(x[10:14])) test2['TeamID2'] = test2.ID.apply(lambda x: int(x[5:9])) test = pd.concat([test1,test2]).drop(['Pred'], axis=1) print(test) test = merge_data(test) print(test) tourney test X = tourney.drop(['Season','TeamID1','TeamID2','result'], axis=1) y = tourney["result"] s = tourney["Season"] X_test = test.drop(['ID', 'Season','TeamID1','TeamID2'], axis=1) X_test s.head() s.value_counts() len(X_test) def model_training(X, y, cv, groups, params, metric, early_stopping=10, \ plt_iter=True, X_test=[], cat_features=[]): feature_importance = pd.DataFrame() val_scores=[] train_evals=[] valid_evals=[] if len(X_test) > 0: test_pred = np.zeros(len(X_test)) for idx, (train_index, val_index) in enumerate(cv.split(X, y, groups)): print("###### fold %d ######" % (idx+1)) X_train, X_val = X.iloc[train_index], X.iloc[val_index] y_train, y_val = y.iloc[train_index], y.iloc[val_index] model = lgb.LGBMClassifier(**params) model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_val, y_val)], early_stopping_rounds=early_stopping, verbose=20 ) val_scores.append(model.best_score_['valid_1'][metric]) train_evals.append(model.evals_result_['training'][metric]) valid_evals.append(model.evals_result_['valid_1'][metric]) if len(X_test) > 0: test_pred = test_pred + model.predict_proba(X_test, num_iteration=model.best_iteration_)[:,1] fold_importance = pd.DataFrame() fold_importance["feature"] = X_train.columns fold_importance["importance"] = model.feature_importances_ fold_importance["fold"] = idx+1 feature_importance = pd.concat([feature_importance, fold_importance] , axis=0) if plt_iter: fig, axs = plt.subplots(2, 2, figsize=(9,6)) for i, ax in enumerate(axs.flatten()): ax.plot(train_evals[i], label='training') ax.plot(valid_evals[i], label='validation') ax.set(xlabel='interations', ylabel=f'{metric}') ax.set_title(f'fold {i+1}', fontsize=12) ax.legend(loc='upper right', prop={'size': 9}) fig.tight_layout() plt.show() print('### CV scores by fold ###') for i in range(cv.get_n_splits(X)): print(f'fold {i+1}: {val_scores[i]:.4f}') print('CV mean score: {0:.4f}, std: {1:.4f}.'\ .format(np.mean(val_scores), np.std(val_scores))) feature_importance = feature_importance[["feature", "importance"]]\ .groupby("feature").mean().sort_values( by="importance", ascending=False) feature_importance.reset_index(inplace=True) if len(X_test) > 0: test_pred = test_pred / cv.get_n_splits(X) return feature_importance, test_pred else: return feature_importance lgb_params = {'objective': 'binary', 'metric': 'binary_logloss', 'boosting': 'gbdt', 'num_leaves': 31, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'learning_rate': 0.1, 'n_estimators': 1000, } N_FOLDS = 10 # Commented out IPython magic to ensure Python compatibility. # %%time # group_kfold = GroupKFold(n_splits=N_FOLDS) # # feature_importance, test_pred = model_training(X, y, group_kfold, s, lgb_params, 'binary_logloss', plt_iter = True, X_test = X_test) plt.figure(figsize=(10, 10)); sns.barplot(x="importance", y="feature", data=feature_importance[:30]) plt.title('Feature Importnace') import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingRegressor, HistGradientBoostingClassifier, RandomForestClassifier from sklearn.model_selection import KFold, GroupKFold from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.svm import SVC from sklearn.metrics import log_loss from tqdm.notebook import tqdm import glob import os import gc import xgboost as xgb train = tourney test = test xgb_params= { "objective": "binary:logistic", "max_depth": 2, "learning_rate": 0.1, "colsample_bytree": 0.8, "subsample": 0.8, "min_child_weight": 30, "n_jobs": 2, "seed": 2021, 'tree_method': "gpu_hist", "gpu_id": 0, 'predictor': 'gpu_predictor' } y = train["result"] s = train["Season"] X = train.drop(['Season','TeamID1','TeamID2','result'], axis=1) X_test = test.drop(['ID', 'Season','TeamID1','TeamID2'], axis=1) train_oof = np.zeros((X.shape[0],)) test_preds = 0 train_oof.shape NUM_FOLDS = 5 kf = GroupKFold(n_splits=NUM_FOLDS) max_iter = 550 for f, (train_ind, val_ind) in tqdm(enumerate(kf.split(X, y, s))): train_df, val_df = X.iloc[train_ind], X.iloc[val_ind] train_target, val_target = y.iloc[train_ind], y.iloc[val_ind] train_df_xgb = xgb.DMatrix(train_df, label=train_target) val_df_xgb = xgb.DMatrix(val_df, label=val_target) model = HistGradientBoostingClassifier(max_iter=max_iter, validation_fraction=None, learning_rate=0.01, max_depth=2, min_samples_leaf=32) model1 = RandomForestClassifier() model2 = LogisticRegression(C=1) model3 = xgb.train(xgb_params, train_df_xgb, 1000) model = model.fit(train_df, train_target) model1 = model1.fit(train_df, train_target) model2 = model2.fit(train_df, train_target) temp_oof = (model.predict_proba(val_df)[:,1] + model1.predict_proba(val_df)[:,1] + model2.predict_proba(val_df)[:,1] + model3.predict(val_df_xgb)) / 4 temp_test = (model.predict_proba(X_test)[:,1] + model1.predict_proba(X_test)[:,1] + model2.predict_proba(X_test)[:,1] + model3.predict(xgb.DMatrix(X_test))) / 4 train_oof[val_ind] = temp_oof test_preds += temp_test / NUM_FOLDS print(log_loss(val_target, temp_oof)) print('CV', log_loss(y, train_oof)) np.save('train_oof', train_oof) np.save('test_preds', test_preds) test = test MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage2.csv') idx = test_preds.shape[0] //2 test_preds[idx:] = 1 - test_preds[idx:] pred = pd.concat([test.ID, pd.Series(test_preds)], axis=1).groupby('ID')[0]\ .mean().reset_index().rename(columns={0:'Pred'}) sub3 = MSampleSubmission.drop(['Pred'],axis=1).merge(pred, on='ID') pred_3 = sub3['Pred'] 0.5539459504635523 idx = test_pred.shape[0] //2 test_pred[idx:] = 1 - test_pred[idx:] pred = pd.concat([test.ID, pd.Series(test_pred)], axis=1).groupby('ID')[0]\ .mean().reset_index().rename(columns={0:'Pred'}) sub = MSampleSubmission.drop(['Pred'],axis=1).merge(pred, on='ID') sub['Pred'] = sub['Pred'] * 0.3 + sub3['Pred'] * 0.7 sub.to_csv('submission.csv', index=False) sub.head() if STAGE_1: rslt = pd.DataFrame() TCResults_s = TCResults.loc[TCResults.Season >= 2015,:] rslt['season'] = TCResults_s.Season rslt['team1'] = TCResults_s.apply(lambda x: x.WTeamID \ if x.WTeamID < x.LTeamID else x.LTeamID , axis=1) rslt['team2'] = TCResults_s.apply(lambda x: x.WTeamID \ if x.WTeamID > x.LTeamID else x.LTeamID , axis=1) rslt['wl'] = TCResults_s.apply(lambda x: 1 if x.WTeamID < x.LTeamID else 0 , axis=1) rslt['ID'] = rslt.apply(lambda x: str(x.season) + '_' + str(x.team1) \ + '_' + str(x.team2), axis=1) sub2 = sub.merge(rslt.loc[:,['ID','wl']], how='inner', on='ID') preds = [] for i in sub2.Pred: preds.append([1-i, i]) print('Test logloss is {:.5f}'.format(log_loss(sub2.wl.values, preds))) 0.51971 sub import gradio as gr def prediction_result(teamID_1, teamID_2): id = f"2021_{int(teamID_1)}_{int(teamID_2)}" pred = sub["Pred"].loc[sub["ID"] == id] p = pred.values return f"The winning probability of teamID {int(teamID_1)} is {round(p[0] * 100, 2)}%" demo = gr.Interface( fn = prediction_result, inputs = ["number", "number"], outputs = "text", title = "MENS MARCH MANIA 2021", description = """Predicted the outcome of the 2021 tournament""", examples = [[1101, 1104], [1101, 1111], [1101, 1116], [1101, 1124], [1101, 1140]], live = True ) demo.launch(share = True)