from predict_pipeline import DetectionPipeline import streamlit as st st.title('Automatic Vechile LICENSE Plate detection') st.write('Detects the License plate of a car and predicts the digits present in it! \nPowered by YOLOv8 Medium model') st.write('') detect_pipeline = DetectionPipeline() st.info('License Plate Detector MODEL loaded successfully!') uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: with st.container(): col1, col2 = st.columns([3, 3]) col1.header('Input Image') col1.image(uploaded_file, caption='Uploaded Image', use_column_width=True) col1.text('') col1.text('') if st.button('Detect!'): preprocessed_img_array = detect_pipeline.preprocess_image(uploaded_file=uploaded_file) detections = detect_pipeline.detectLicensePlates(input_array=preprocessed_img_array) detections_img = detect_pipeline.detections2Image(preprocess_image=preprocessed_img_array, detections=detections) col2.header('Detections') col2.image(detections_img, caption='Predictions by model', use_column_width=True)