File size: 4,107 Bytes
35b51f6
 
 
 
 
 
 
 
 
 
 
 
 
96040f6
 
 
 
35b51f6
96040f6
 
35b51f6
96040f6
 
35b51f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import gdown
import zipfile
import shutil
import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import time
import modules.model as model

# Download model if not available
if os.path.exists('celeba/') == False:
    url = 'https://drive.google.com/file/d/13vkq4tFCPE8O78KTj84HHM6kBnYkt8gP/view?usp=sharing'
    output = 'download.zip'
    gdown.download(url, output, fuzzy=True)

    with zipfile.ZipFile(output, 'r') as zip_ref:
        zip_ref.extractall()

    os.remove(output)
    shutil.rmtree('__MACOSX')

# Set device
if torch.backends.mps.is_available():
    device = torch.device('mps')
    device_name = 'Apple Silicon GPU'
elif torch.cuda.is_available():
    device = torch.device('cuda')
    device_name = 'CUDA'
else:
    device = torch.device('cpu')
    device_name = 'CPU'

torch.set_default_device(device)

print(f'\nDevice: {device_name}')

# Define dataset, dataloader and transform
imsize = int(128/0.8)
batch_size = 10

fivecrop_transform = transforms.Compose([
    transforms.Resize([imsize, imsize]),
    transforms.Grayscale(1),
    transforms.FiveCrop(int(imsize*0.8)),
    transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
    transforms.Normalize(0, 1)
])

train_dataset = datasets.CelebA(
    root='',
    split='all',
    target_type='attr',
    transform=fivecrop_transform,
    download=True,
)

train_loader = DataLoader(
    train_dataset,
    batch_size=batch_size,
    shuffle=True,
    generator=torch.Generator(device=device)
)

# Male index
factor = 20

# Define model, optimiser and scheduler
torch.manual_seed(2687)
resnet = model.resnetModel_128()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
    resnet.parameters(), 
    lr=0.01,
    momentum=0.9,
    weight_decay=0.001
)
scheduler = torch.optim.lr_scheduler.StepLR(
    optimizer=optimizer,
    step_size=1,
    gamma=0.1
)

def mins_to_hours(mins):
    hours = int(mins/60)
    rem_mins = mins % 60
    return hours, rem_mins

epochs = 2
train_losses = []
train_accuracy = []
for i in range(epochs):
    epoch_time = 0

    for j, (X_train, y_train) in enumerate(train_loader):
        batch_start = time.time()

        X_train = X_train.to(device)
        y_train = y_train[:, factor]

        bs, ncrops, c, h, w = X_train.size()
        y_pred_crops = resnet.forward(X_train.view(-1, c, h, w))
        y_pred = y_pred_crops.view(bs, ncrops, -1).mean(1)

        loss = criterion(y_pred, y_train)

        predicted = torch.max(y_pred.data, 1)[1]
        train_batch_accuracy = (predicted == y_train).sum()/len(X_train)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_losses.append(loss.item())
        train_accuracy.append(train_batch_accuracy.item())

        batch_end = time.time()

        batch_time = batch_end - batch_start
        epoch_time += batch_time
        avg_batch_time = epoch_time/(j+1)
        batches_remaining = len(train_loader)-(j+1)
        epoch_mins_remaining = round(batches_remaining*avg_batch_time/60)
        epoch_time_remaining = mins_to_hours(epoch_mins_remaining)

        full_epoch = avg_batch_time*len(train_loader)
        epochs_remaining = epochs-(i+1)
        rem_epoch_mins_remaining = epoch_mins_remaining+round(full_epoch*epochs_remaining/60)
        rem_epoch_time_remaining = mins_to_hours(rem_epoch_mins_remaining)
        
        if (j+1) % 10 == 0:
            print(f'\nEpoch: {i+1}/{epochs} | Train Batch: {j+1}/{len(train_loader)}')
            print(f'Current epoch: {epoch_time_remaining[0]} hours {epoch_time_remaining[1]} minutes')
            print(f'Remaining epochs: {rem_epoch_time_remaining[0]} hours {rem_epoch_time_remaining[1]} minutes')
            print(f'Train Loss: {loss}')
            print(f'Train Accuracy: {train_batch_accuracy}')

    scheduler.step()

    trained_model_name = resnet.model_name + '_epoch_' + str(i+1) + '.pt'
    torch.save(
        resnet.state_dict(), 
        trained_model_name
    )