Spaces:
Running
Running
File size: 4,107 Bytes
35b51f6 96040f6 35b51f6 96040f6 35b51f6 96040f6 35b51f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
import gdown
import zipfile
import shutil
import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import time
import modules.model as model
# Download model if not available
if os.path.exists('celeba/') == False:
url = 'https://drive.google.com/file/d/13vkq4tFCPE8O78KTj84HHM6kBnYkt8gP/view?usp=sharing'
output = 'download.zip'
gdown.download(url, output, fuzzy=True)
with zipfile.ZipFile(output, 'r') as zip_ref:
zip_ref.extractall()
os.remove(output)
shutil.rmtree('__MACOSX')
# Set device
if torch.backends.mps.is_available():
device = torch.device('mps')
device_name = 'Apple Silicon GPU'
elif torch.cuda.is_available():
device = torch.device('cuda')
device_name = 'CUDA'
else:
device = torch.device('cpu')
device_name = 'CPU'
torch.set_default_device(device)
print(f'\nDevice: {device_name}')
# Define dataset, dataloader and transform
imsize = int(128/0.8)
batch_size = 10
fivecrop_transform = transforms.Compose([
transforms.Resize([imsize, imsize]),
transforms.Grayscale(1),
transforms.FiveCrop(int(imsize*0.8)),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Normalize(0, 1)
])
train_dataset = datasets.CelebA(
root='',
split='all',
target_type='attr',
transform=fivecrop_transform,
download=True,
)
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
generator=torch.Generator(device=device)
)
# Male index
factor = 20
# Define model, optimiser and scheduler
torch.manual_seed(2687)
resnet = model.resnetModel_128()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
resnet.parameters(),
lr=0.01,
momentum=0.9,
weight_decay=0.001
)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer=optimizer,
step_size=1,
gamma=0.1
)
def mins_to_hours(mins):
hours = int(mins/60)
rem_mins = mins % 60
return hours, rem_mins
epochs = 2
train_losses = []
train_accuracy = []
for i in range(epochs):
epoch_time = 0
for j, (X_train, y_train) in enumerate(train_loader):
batch_start = time.time()
X_train = X_train.to(device)
y_train = y_train[:, factor]
bs, ncrops, c, h, w = X_train.size()
y_pred_crops = resnet.forward(X_train.view(-1, c, h, w))
y_pred = y_pred_crops.view(bs, ncrops, -1).mean(1)
loss = criterion(y_pred, y_train)
predicted = torch.max(y_pred.data, 1)[1]
train_batch_accuracy = (predicted == y_train).sum()/len(X_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_losses.append(loss.item())
train_accuracy.append(train_batch_accuracy.item())
batch_end = time.time()
batch_time = batch_end - batch_start
epoch_time += batch_time
avg_batch_time = epoch_time/(j+1)
batches_remaining = len(train_loader)-(j+1)
epoch_mins_remaining = round(batches_remaining*avg_batch_time/60)
epoch_time_remaining = mins_to_hours(epoch_mins_remaining)
full_epoch = avg_batch_time*len(train_loader)
epochs_remaining = epochs-(i+1)
rem_epoch_mins_remaining = epoch_mins_remaining+round(full_epoch*epochs_remaining/60)
rem_epoch_time_remaining = mins_to_hours(rem_epoch_mins_remaining)
if (j+1) % 10 == 0:
print(f'\nEpoch: {i+1}/{epochs} | Train Batch: {j+1}/{len(train_loader)}')
print(f'Current epoch: {epoch_time_remaining[0]} hours {epoch_time_remaining[1]} minutes')
print(f'Remaining epochs: {rem_epoch_time_remaining[0]} hours {rem_epoch_time_remaining[1]} minutes')
print(f'Train Loss: {loss}')
print(f'Train Accuracy: {train_batch_accuracy}')
scheduler.step()
trained_model_name = resnet.model_name + '_epoch_' + str(i+1) + '.pt'
torch.save(
resnet.state_dict(),
trained_model_name
) |