import cv2 import mediapipe as mp import os from gradio_client import Client # from test_image_fusion import Test # from test_image_fusion import Test from test_image import Test import numpy as np from PIL import Image import numpy as np import cv2 # client = Client("https://tbvl-real-and-fake-face-detection.hf.space/--replicas/40d41jxhhx/") data = 'faceswap' dct = 'fft' # testet = Test(model_paths = [f"weights/{data}-hh-best_model.pth", # f"weights/{data}-fft-best_model.pth"], # multi_modal = ['hh', 'fft']) testet = Test(model_path =f"weights/{data}-hh-best_model.pth", multi_modal ='hh') # Initialize MediaPipe Face Detection mp_face_detection = mp.solutions.face_detection mp_drawing = mp.solutions.drawing_utils face_detection = mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.35) # Create a directory to save the cropped face images if it does not exist save_dir = "cropped_faces" os.makedirs(save_dir, exist_ok=True) # def detect_and_label_faces(image_path): # Function to crop faces from a video and save them as images # def crop_faces_from_video(video_path): # # Read the video # cap = cv2.VideoCapture(video_path) # frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # fps = int(cap.get(cv2.CAP_PROP_FPS)) # total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # # Define the codec and create VideoWriter object # out = cv2.VideoWriter(f'output_{real}_{data}_fusion.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, (frame_width, frame_height)) # if not cap.isOpened(): # print("Error: Could not open video.") # return # Convert PIL Image to NumPy array for OpenCV def pil_to_opencv(pil_image): open_cv_image = np.array(pil_image) # Convert RGB to BGR for OpenCV open_cv_image = open_cv_image[:, :, ::-1].copy() return open_cv_image # Convert OpenCV NumPy array to PIL Image def opencv_to_pil(opencv_image): # Convert BGR to RGB pil_image = Image.fromarray(opencv_image[:, :, ::-1]) return pil_image def detect_and_label_faces(frame): frame = pil_to_opencv(frame) print(type(frame)) # Convert the frame to RGB frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Perform face detection results = face_detection.process(frame_rgb) # If faces are detected, crop and save each face as an image if results.detections: for face_count,detection in enumerate(results.detections): bboxC = detection.location_data.relative_bounding_box ih, iw, _ = frame.shape x, y, w, h = int(bboxC.xmin * iw), int(bboxC.ymin * ih), int(bboxC.width * iw), int(bboxC.height * ih) # Crop the face region and make sure the bounding box is within the frame dimensions crop_img = frame[max(0, y):min(ih, y+h), max(0, x):min(iw, x+w)] if crop_img.size > 0: face_filename = os.path.join(save_dir, f'face_{face_count}.jpg') cv2.imwrite(face_filename, crop_img) label = testet.testimage(face_filename) if os.path.exists(face_filename): os.remove(face_filename) color = (0, 0, 255) if label == 'fake' else (0, 255, 0) cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.putText(frame, label, (x, y + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2) return opencv_to_pil(frame)