import torch import torch.nn as nn from torch.functional import Tensor from torch.nn.modules.activation import Tanhshrink from timm.models.layers import trunc_normal_ from functools import partial class Ffn(nn.Module): # feed forward network layer after attention def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, task_embed=None, level=0): N, L, D = x.shape qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) # for decoder's task_embedding of different levels of attention layers if task_embed != None: _N, _H, _L, _D = q.shape task_embed = task_embed.reshape(1, _H, _L, _D) if level == 1: q += task_embed k += task_embed if level == 2: q += task_embed attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(N, L, D) x = self.proj(x) x = self.proj_drop(x) return x class EncoderLayer(nn.Module): def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm2 = norm_layer(dim) ffn_hidden_dim = int(dim * ffn_ratio) self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.ffn(self.norm2(x)) return x class DecoderLayer(nn.Module): def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn1 = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm2 = norm_layer(dim) self.attn2 = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm3 = norm_layer(dim) ffn_hidden_dim = int(dim * ffn_ratio) self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, task_embed): x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1) x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2) x = x + self.ffn(self.norm3(x)) return x class ResBlock(nn.Module): def __init__(self, channels): super(ResBlock, self).__init__() self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1, padding=2, bias=False) self.bn1 = nn.InstanceNorm2d(channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1, padding=2, bias=False) self.bn2 = nn.InstanceNorm2d(channels) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out class Head(nn.Module): def __init__(self, in_channels, out_channels): super(Head, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.InstanceNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.resblock = ResBlock(out_channels) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.resblock(out) return out class PatchEmbed(nn.Module): """ Feature to Patch Embedding input : N C H W output: N num_patch P^2*C """ def __init__(self, patch_size=1, in_channels=64): super().__init__() self.patch_size = patch_size self.dim = self.patch_size ** 2 * in_channels def forward(self, x): N, C, H, W = ori_shape = x.shape p = self.patch_size num_patches = (H // p) * (W // p) out = torch.zeros((N, num_patches, self.dim)).to(x.device) i, j = 0, 0 for k in range(num_patches): if i + p > W: i = 0 j += p out[:, k, :] = x[:, :, i:i + p, j:j + p].flatten(1) i += p return out, ori_shape class DePatchEmbed(nn.Module): """ Patch Embedding to Feature input : N num_patch P^2*C output: N C H W """ def __init__(self, patch_size=1, in_channels=64): super().__init__() self.patch_size = patch_size self.num_patches = None self.dim = self.patch_size ** 2 * in_channels def forward(self, x, ori_shape): N, num_patches, dim = x.shape _, C, H, W = ori_shape p = self.patch_size out = torch.zeros(ori_shape).to(x.device) i, j = 0, 0 for k in range(num_patches): if i + p > W: i = 0 j += p out[:, :, i:i + p, j:j + p] = x[:, k, :].reshape(N, C, p, p) i += p return out class Tail(nn.Module): def __init__(self, in_channels, out_channels): super(Tail, self).__init__() self.output = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) def forward(self, x): out = self.output(x) return out class IllTr_Net(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, patch_size=1, in_channels=3, mid_channels=16, num_classes=1000, depth=12, num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., norm_layer=nn.LayerNorm): super(IllTr_Net, self).__init__() self.num_classes = num_classes self.embed_dim = patch_size * patch_size * mid_channels self.head = Head(in_channels, mid_channels) self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels) self.embed_dim = self.patch_embedding.dim if self.embed_dim % num_heads != 0: raise RuntimeError("Embedding dim must be devided by numbers of heads") self.pos_embed = nn.Parameter(torch.zeros(1, (128 // patch_size) ** 2, self.embed_dim)) self.task_embed = nn.Parameter(torch.zeros(6, 1, (128 // patch_size) ** 2, self.embed_dim)) self.encoder = nn.ModuleList([ EncoderLayer( dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) for _ in range(depth)]) self.decoder = nn.ModuleList([ DecoderLayer( dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) for _ in range(depth)]) self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels) # tail self.tail = Tail(int(mid_channels), in_channels) self.acf = nn.Hardtanh(0,1) trunc_normal_(self.pos_embed, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): x = self.head(x) x, ori_shape = self.patch_embedding(x) x = x + self.pos_embed[:, :x.shape[1]] for blk in self.encoder: x = blk(x) for blk in self.decoder: x = blk(x, self.task_embed[0, :, :x.shape[1]]) x = self.de_patch_embedding(x, ori_shape) x = self.tail(x) x = self.acf(x) return x def IllTr(**kwargs): model = IllTr_Net( patch_size=4, depth=6, num_heads=8, ffn_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model