import cv2 import numpy as np # Load the SSD model and configuration model_path = 'MobileNetSSD_deploy.caffemodel' # Path to the pre-trained SSD model config_path = 'MobileNetSSD_deploy.prototxt.txt' # Path to the deploy prototxt file # Load the class labels from the COCO dataset CLASSES = [ 'background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'none', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'none', 'backpack', 'umbrella', 'none', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'none', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'none', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Initialize the OpenCV DNN network net = cv2.dnn.readNetFromCaffe(config_path,model_path) # Function to process the video frame and detect objects def detect_objects_in_frame(frame): # Get the image shape height, width = frame.shape[:2] # Prepare the frame for the model (mean subtraction and resizing) blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (127.5, 127.5, 127.5), swapRB=True, crop=False) # Set the blob as input to the network net.setInput(blob) # Run the forward pass to get predictions detections = net.forward() # Loop through all the detections for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.5: # Set a threshold for object detection # Get the class index and the bounding box coordinates class_id = int(detections[0, 0, i, 1]) left = int(detections[0, 0, i, 3] * width) top = int(detections[0, 0, i, 4] * height) right = int(detections[0, 0, i, 5] * width) bottom = int(detections[0, 0, i, 6] * height) # Draw the bounding box and label on the frame label = f"{CLASSES[class_id]}: {confidence:.2f}" cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2) cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) return frame import gradio as gr from gradio_webrtc import WebRTC css = """.my-group {max-width: 600px !important; max-height: 600px !important;} .my-column {display: flex !important; justify-content: center !important; align-items: center !important;}""" with gr.Blocks(css=css) as demo: gr.HTML( """

Mobilev2 ssd Webcam Stream (Powered by WebRTC ⚡️)

""" ) with gr.Column(elem_classes=["my-column"]): with gr.Group(elem_classes=["my-group"]): image = WebRTC(label="Stream", rtc_configuration=None) # conf_threshold = gr.Slider( # label="Confidence Threshold", # minimum=0.0, # maximum=1.0, # step=0.05, # value=0.30, # ) # image.stream( # fn=detect_objects_in_frame, inputs=[image, conf_threshold], outputs=[image], time_limit=10 # ) if __name__ == "__main__": demo.launch()