import tf_keras as keras import gradio as gr import cv2 import os from dotenv import load_dotenv load_dotenv() print(os.listdir('./model')) used_model = keras.models.load_model('./model') new_classes = ['blight', 'common_rust', 'gray_leaf_spot','healthy'] def classify_image(img_dt): img_dt = cv2.resize(img_dt,(256,256)) img_dt = img_dt.reshape((-1,256,256,3)) prediction = used_model.predict(img_dt).flatten() confidences = {new_classes[i]: float(prediction[i]) for i in range (4) } return confidences with gr.Blocks() as demo: signal = gr.Markdown(''' Welcome to Maize Classifier,This model can identify if a leaf is **HEALTHY**, has **COMMON RUST**, **BLIGHT** or **GRAY LEAF SPOT**''') with gr.Row(): inp = gr.Image() out = gr.Label() inp.upload(fn= classify_image, inputs = inp, outputs = out) demo.launch()