import sqlite3 import pandas as pd import streamlit as st from transformers import pipeline from sklearn.metrics import accuracy_score # Load the data into a pandas dataframe df = pd.read_csv('https://raw.githubusercontent.com/SrinidhiRaghavan/AI-Sentiment-Analysis-on-IMDB-Dataset/master/test/imdb_te.csv', encoding= 'unicode_escape') # Create a connection to the database conn = sqlite3.connect('movie_reviews.db') # Add a column for the sentiment labels df['sentiment'] = '' # Load the data into a table df.to_sql('movie_reviews', conn, if_exists='replace', index=False) # Load the pre-trained sentiment analysis model classifier = pipeline('sentiment-analysis') # Extract sentiment labels for the movie reviews reviews = conn.execute('SELECT text FROM movie_reviews limit 10') for i, row in enumerate(reviews): review = row[0] sentiment = classifier(review[:512])[0]['label'] if sentiment == 'POSITIVE': label = 1 else: label = 0 conn.execute('UPDATE movie_reviews SET sentiment = ? WHERE rowid = ?', (label, i+1)) conn.commit() def main(): # Load the data from the SQLite database X = pd.read_sql_query('SELECT text FROM movie_reviews limit 10', conn) y = pd.read_sql_query('SELECT sentiment FROM movie_reviews limit 10', conn) # Train a logistic regression model on the sentiment labels clf = pipeline('sentiment-analysis') y_pred = [int(result['label'] == 'POSITIVE') for result in clf(X['text'].to_list(), truncation=True)] # Evaluate the model on the testing set accuracy = accuracy_score(y['sentiment'].astype(int).to_list(), y_pred) # Create a Streamlit app st.title('Sentiment Analysis on Movie Reviews') st.subheader('Accuracy') st.write(f'{accuracy:.2f}') st.subheader('Movie Reviews') st.write(X) st.subheader('Sentiment Labels') st.write(y) if __name__ == '__main__': main()