#!/bin/bash #SBATCH --job-name=randeng_pegasus_523M_summary #SBATCH --nodes=1 #SBATCH --ntasks-per-node=8 #SBATCH --gres=gpu:8 # number of gpus #SBATCH --cpus-per-task=30 #SBATCH -o %x-%j.log set -x -e echo "START TIME: $(date)" MODEL_NAME=randeng_pegasus_523M_summary_last MICRO_BATCH_SIZE=128 ROOT_DIR=/cognitive_comp/dongxiaoqun/finetune/${MODEL_NAME} if [ ! -d ${ROOT_DIR} ];then mkdir ${ROOT_DIR} echo ${ROOT_DIR} created!!!!!!!!!!!!!! else echo ${ROOT_DIR} exist!!!!!!!!!!!!!!! fi output_save_path=$ROOT_DIR/${MODEL_NAME}.json if [ -f ${output_save_path} ];then echo ${output_save_path} exist, rm it!!!!!!!!!!!!!!!!! rm ${output_save_path} fi ZERO_STAGE=1 config_json="${ROOT_DIR}/ds_config.${MODEL_NAME}.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE}, "steps_per_print": 1000, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": false, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 50000000, "allgather_bucket_size": 500000000 }, "optimizer": { "type": "Adam", "params": { "lr": 5e-5, "betas": [ 0.9, 0.999 ], "eps": 1e-8, "weight_decay": 1e-2 } }, "scheduler": { "params": { "warmup_min_lr": 1e-8, "warmup_max_lr": 1e-4, "total_num_steps": 60000, "warmup_num_steps" : 1000 }, "type": "WarmupDecayLR" }, "zero_allow_untested_optimizer": false, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=/cognitive_comp/dongxiaoqun/torch_extendsions # export MASTER_PORT=$[RANDOM%10000+50000] # # --strategy deepspeed_stage_${ZERO_STAGE} \ TRAINER_ARGS=" --max_epochs 10 \ --gpus 1 \ --num_nodes 1 \ --strategy deepspeed_stage_${ZERO_STAGE} \ --default_root_dir $ROOT_DIR \ --dirpath $ROOT_DIR/ckpt \ --save_top_k 3 \ --monitor val_loss \ --mode min \ --save_last \ --every_n_train_steps 10000 \ --val_check_interval 0.1 \ " prompt='"' DATA_ARGS=" --datasets_name lcsts \ --num_workers 30 \ --train_batchsize $MICRO_BATCH_SIZE \ --val_batchsize $MICRO_BATCH_SIZE \ --test_batchsize $MICRO_BATCH_SIZE \ --max_enc_length 128 \ --max_dec_length 64 \ --val_datasets_field val \ --prompt $prompt \ " # --prompt $prompt \ # --pretrained_model_path /cognitive_comp/ganruyi/experiments/randeng_t5_77M_summary/ckpt/hf_pretrained_epoch1_step75019 \ # mode_path="/cognitive_comp/dongxiaoqun/train_model/fengshen-pegasus-base/ckpt/hf_pretrained_epoch0_step22200/" mode_path="/cognitive_comp/dongxiaoqun/train_model/fengshen-pegasus-large/ckpt/hf_pretrained_epoch0_step122000" cp /cognitive_comp/dongxiaoqun/pretrained_model/pegasus-large/vocab.txt $mode_path/ MODEL_ARGS=" --pretrained_model_path $mode_path \ --output_save_path $output_save_path \ --self_tokenizer \ " SCRIPTS_PATH=/cognitive_comp/dongxiaoqun/debug/Fengshenbang-LM/fengshen/examples/summary/seq2seq_summary.py export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD source activate conda activate torchnew srun --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=30 -o ${MODEL_NAME}-%J.log --jobid=229555 bash -c 'python3 $SCRIPT_PATH $CMD'