### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_DenseNet121_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names class_names = ['infected', 'notinfected'] ### 2. Model and transforms preparation ### # Create an instance of trained DenseNet121 model Dense121, transform = create_DenseNet121_model() ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """ Transforms and performs a prediction on img then returns prediction and time taken """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = transform(img).unsqueeze(0) # Put model into evaluation mode and turn on the inference mode Dense121.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logit intp prediction probability pred_logit = Dense121(img).squeeze() pred_prob = torch.sigmoid(pred_logit) pred_label = torch.round(pred_prob) pred_label = pred_label.type(torch.int64) pred_class = class_names[pred_label.cpu()] # pred_prob = float(pred_prob) # This line and next one are for formatting the pred_prob to print only 4 decimal places # pred_prob = round(pred_prob, 4) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_label = pred_class # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_label, pred_time ### 4. Gradio app ### # Create title and description strings title = "PCOS Detector in Ultrasound Images" description = "A DenseNet121 feature extractor computer vision model trained from scratch to classify ultrasound images of ovaries into PCOS infected or not infected." #article= "Code implementation available at [GitHub](https://github.com/haidary99?tab=repositories)" # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), outputs=[gr.Label(label="Model Prediction"), gr.Number(label="Prediction time (s)")], # Create examples list from "examples/" directory examples=example_list, title=title, description=description) #article=article) # Launch the demo demo.launch()