Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
|
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
from fastapi.responses import RedirectResponse, JSONResponse, HTMLResponse
|
| 4 |
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 5 |
-
from typing import Optional, Dict, Any, List
|
| 6 |
import logging
|
| 7 |
import time
|
| 8 |
import os
|
|
@@ -19,12 +19,6 @@ import numpy as np
|
|
| 19 |
from pydantic import BaseModel
|
| 20 |
import asyncio
|
| 21 |
import google.generativeai as genai
|
| 22 |
-
import magic # For MIME type detection
|
| 23 |
-
import datetime
|
| 24 |
-
import matplotlib
|
| 25 |
-
matplotlib.use('Agg') # Set non-interactive backend
|
| 26 |
-
import matplotlib.pyplot as plt
|
| 27 |
-
import seaborn as sns
|
| 28 |
|
| 29 |
# Configure logging
|
| 30 |
logging.basicConfig(
|
|
@@ -33,42 +27,28 @@ logging.basicConfig(
|
|
| 33 |
)
|
| 34 |
logger = logging.getLogger("cosmic_ai")
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
app.mount("/images", StaticFiles(directory="images"), name="images")
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
os.makedirs(IMAGES_DIR, exist_ok=True)
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
genai.configure(api_key=API_KEY)
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
"english": "en",
|
| 57 |
-
"french": "fr",
|
| 58 |
-
"spanish": "es",
|
| 59 |
-
"german": "de",
|
| 60 |
-
"italian": "it",
|
| 61 |
-
"portuguese": "pt",
|
| 62 |
-
"russian": "ru",
|
| 63 |
-
"chinese": "zh",
|
| 64 |
-
"japanese": "ja",
|
| 65 |
-
"korean": "ko",
|
| 66 |
-
"arabic": "ar",
|
| 67 |
-
"hindi": "hi"
|
| 68 |
-
}
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
|
|
|
| 72 |
|
| 73 |
# Model configurations
|
| 74 |
MODELS = {
|
|
@@ -77,148 +57,42 @@ MODELS = {
|
|
| 77 |
"visual-qa": "dandelin/vilt-b32-finetuned-vqa",
|
| 78 |
"chatbot": "gemini-1.5-pro",
|
| 79 |
"translation": "facebook/m2m100_418M",
|
| 80 |
-
"
|
| 81 |
-
"generate": "gemini-1.5-pro"
|
| 82 |
}
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
#
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
Detect user intent and target language from input
|
| 94 |
-
Returns a tuple of (intent, target_language)
|
| 95 |
-
"""
|
| 96 |
-
if not text and not file:
|
| 97 |
-
return "unknown", "en"
|
| 98 |
-
|
| 99 |
-
text_lower = text.lower() if text else ""
|
| 100 |
-
|
| 101 |
-
# File-based intent detection
|
| 102 |
-
if file:
|
| 103 |
-
mime_type = file.content_type.lower() if hasattr(file, 'content_type') else ""
|
| 104 |
-
filename_lower = file.filename.lower() if hasattr(file, 'filename') else ""
|
| 105 |
-
|
| 106 |
-
# Image processing
|
| 107 |
-
if mime_type.startswith('image/'):
|
| 108 |
-
# Check if there's a specific question about the image
|
| 109 |
-
if text and any(phrase in text_lower for phrase in [
|
| 110 |
-
"what is", "how many", "does this", "is there", "can you see",
|
| 111 |
-
"what color", "identify", "explain"
|
| 112 |
-
]):
|
| 113 |
-
return "visual-qa", "en"
|
| 114 |
-
else:
|
| 115 |
-
# Just caption the image if no specific question
|
| 116 |
-
return "image-to-text", "en"
|
| 117 |
-
|
| 118 |
-
# Data visualization for spreadsheets
|
| 119 |
-
elif any(mime_type.startswith(mt) for mt in ['text/csv', 'application/vnd.ms-excel', 'application/vnd.openxmlformats-officedocument.spreadsheetml']) or \
|
| 120 |
-
any(filename_lower.endswith(ext) for ext in ['.csv', '.xls', '.xlsx']):
|
| 121 |
-
return "visualize", "en"
|
| 122 |
-
|
| 123 |
-
# Document processing
|
| 124 |
-
elif any(mime_type.startswith(mt) for mt in [
|
| 125 |
-
'application/pdf',
|
| 126 |
-
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
|
| 127 |
-
'application/msword',
|
| 128 |
-
'text/plain',
|
| 129 |
-
'application/rtf',
|
| 130 |
-
'text/rtf'
|
| 131 |
-
]) or any(filename_lower.endswith(ext) for ext in ['.pdf', '.docx', '.doc', '.txt', '.rtf']):
|
| 132 |
-
# If there's a specific question about the document
|
| 133 |
-
if text and ("?" in text or any(word in text_lower for word in ["what", "who", "how", "when", "where", "why", "which", "find", "search"])):
|
| 134 |
-
return "file-qa", "en"
|
| 135 |
-
# If translation is requested
|
| 136 |
-
elif text and any(keyword in text_lower for keyword in ["translate", "translation", "convert to"]):
|
| 137 |
-
# Extract target language
|
| 138 |
-
target_lang = "en" # Default to English
|
| 139 |
-
|
| 140 |
-
# Check for language specification patterns
|
| 141 |
-
lang_pattern = r"to\s+(\w+)"
|
| 142 |
-
lang_match = re.search(lang_pattern, text_lower)
|
| 143 |
-
|
| 144 |
-
if lang_match:
|
| 145 |
-
lang_name = lang_match.group(1).lower()
|
| 146 |
-
if lang_name in LANGUAGE_MAPPING:
|
| 147 |
-
target_lang = LANGUAGE_MAPPING[lang_name]
|
| 148 |
-
# Check if it's a direct language code
|
| 149 |
-
elif lang_name in LANGUAGE_MAPPING.values():
|
| 150 |
-
target_lang = lang_name
|
| 151 |
-
|
| 152 |
-
return "translate", target_lang
|
| 153 |
-
# Default to summarization for documents without specific instructions
|
| 154 |
-
else:
|
| 155 |
-
return "summarize", "en"
|
| 156 |
-
|
| 157 |
-
# Text-based intent detection (no file)
|
| 158 |
-
|
| 159 |
-
# Translation intent
|
| 160 |
-
if any(keyword in text_lower for keyword in ["translate", "translation", "say in", "how to say"]):
|
| 161 |
-
# Try to extract target language
|
| 162 |
-
target_lang = "en" # Default
|
| 163 |
-
|
| 164 |
-
# Check for language specification patterns
|
| 165 |
-
lang_patterns = [
|
| 166 |
-
r"to\s+(\w+)",
|
| 167 |
-
r"in\s+(\w+)",
|
| 168 |
-
r"into\s+(\w+)"
|
| 169 |
-
]
|
| 170 |
-
|
| 171 |
-
for pattern in lang_patterns:
|
| 172 |
-
lang_match = re.search(pattern, text_lower)
|
| 173 |
-
if lang_match:
|
| 174 |
-
lang_name = lang_match.group(1).lower()
|
| 175 |
-
if lang_name in LANGUAGE_MAPPING:
|
| 176 |
-
target_lang = LANGUAGE_MAPPING[lang_name]
|
| 177 |
-
break
|
| 178 |
-
# Check if it's a direct language code
|
| 179 |
-
elif lang_name in LANGUAGE_MAPPING.values():
|
| 180 |
-
target_lang = lang_name
|
| 181 |
-
break
|
| 182 |
-
|
| 183 |
-
# Check for "all languages" request
|
| 184 |
-
if "all languages" in text_lower or "all supported languages" in text_lower:
|
| 185 |
-
target_lang = "all"
|
| 186 |
-
|
| 187 |
-
return "translate", target_lang
|
| 188 |
-
|
| 189 |
-
# Summarization intent
|
| 190 |
-
elif any(keyword in text_lower for keyword in [
|
| 191 |
-
"summarize", "summary", "overview", "brief", "condense", "shorten", "tldr"
|
| 192 |
-
]) or (len(text) > 500 and not any(keyword in text_lower for keyword in ["write", "generate", "create"])):
|
| 193 |
-
return "summarize", "en"
|
| 194 |
-
|
| 195 |
-
# Text generation intent (creative writing)
|
| 196 |
-
elif any(keyword in text_lower for keyword in [
|
| 197 |
-
"write", "generate", "create", "compose", "draft", "story", "poem", "essay",
|
| 198 |
-
"script", "letter", "email", "article", "blog"
|
| 199 |
-
]):
|
| 200 |
-
return "generate", "en"
|
| 201 |
-
|
| 202 |
-
# Default to chat
|
| 203 |
-
return "chat", "en"
|
| 204 |
|
| 205 |
-
#
|
| 206 |
@lru_cache(maxsize=8)
|
| 207 |
def load_model(task: str, model_name: str = None):
|
| 208 |
"""Cached model loader with proper task names and error handling"""
|
| 209 |
try:
|
| 210 |
-
logger.info(f"Loading model for task: {task}, model: {model_name or MODELS.get(task
|
| 211 |
start_time = time.time()
|
| 212 |
-
model_to_load = model_name or MODELS.get(task)
|
| 213 |
|
| 214 |
-
|
| 215 |
-
raise ValueError(f"No model configured for task: {task}")
|
| 216 |
|
| 217 |
-
|
| 218 |
-
if task == "chatbot" or task == "generate":
|
| 219 |
return genai.GenerativeModel(model_to_load)
|
| 220 |
-
|
| 221 |
-
# Visual Question Answering
|
| 222 |
if task == "visual-qa":
|
| 223 |
processor = ViltProcessor.from_pretrained(model_to_load)
|
| 224 |
model = ViltForQuestionAnswering.from_pretrained(model_to_load)
|
|
@@ -228,453 +102,621 @@ def load_model(task: str, model_name: str = None):
|
|
| 228 |
def vqa_function(image, question, **generate_kwargs):
|
| 229 |
if image.mode != "RGB":
|
| 230 |
image = image.convert("RGB")
|
| 231 |
-
|
| 232 |
inputs = processor(image, question, return_tensors="pt").to(device)
|
| 233 |
logger.info(f"VQA inputs - question: {question}, image size: {image.size}")
|
| 234 |
-
|
| 235 |
with torch.no_grad():
|
| 236 |
outputs = model(**inputs)
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
logger.info(f"VQA raw output: {answer}")
|
| 242 |
return answer
|
| 243 |
|
| 244 |
return vqa_function
|
| 245 |
|
| 246 |
-
|
| 247 |
-
try:
|
| 248 |
-
if task == "translation":
|
| 249 |
-
# For translation, return both tokenizer and model
|
| 250 |
-
tokenizer = M2M100Tokenizer.from_pretrained(model_to_load)
|
| 251 |
-
model = M2M100ForConditionalGeneration.from_pretrained(model_to_load)
|
| 252 |
-
return tokenizer, model
|
| 253 |
-
else:
|
| 254 |
-
# Map task names to transformers pipeline tasks
|
| 255 |
-
task_mapping = {
|
| 256 |
-
"summarization": "summarization",
|
| 257 |
-
"question-answering": "question-answering",
|
| 258 |
-
"image-to-text": "image-to-text"
|
| 259 |
-
}
|
| 260 |
-
|
| 261 |
-
pipeline_task = task_mapping.get(task, task)
|
| 262 |
-
return pipeline(pipeline_task, model=model_to_load)
|
| 263 |
-
except Exception as e:
|
| 264 |
-
logger.error(f"Pipeline creation failed for {task}: {str(e)}")
|
| 265 |
-
raise
|
| 266 |
-
|
| 267 |
-
logger.info(f"Model loaded in {time.time() - start_time:.2f}s")
|
| 268 |
|
| 269 |
except Exception as e:
|
| 270 |
logger.error(f"Model load failed: {str(e)}")
|
| 271 |
raise HTTPException(status_code=500, detail=f"Model loading failed: {task} - {str(e)}")
|
| 272 |
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
content = await file.read()
|
| 278 |
-
|
| 279 |
-
# Use Python-magic to detect MIME type
|
| 280 |
try:
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
except Exception as e:
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
| 288 |
|
| 289 |
try:
|
| 290 |
-
|
| 291 |
-
if mime_type == 'application/pdf' or filename.endswith('.pdf'):
|
| 292 |
-
try:
|
| 293 |
-
doc = fitz.open(stream=content, filetype="pdf")
|
| 294 |
-
text = ""
|
| 295 |
-
for page in doc:
|
| 296 |
-
text += page.get_text()
|
| 297 |
-
doc.close()
|
| 298 |
-
|
| 299 |
-
if not text.strip():
|
| 300 |
-
logger.warning(f"No text extracted from PDF: {filename}, attempting OCR fallback")
|
| 301 |
-
raise ValueError("No text could be extracted from the PDF")
|
| 302 |
-
|
| 303 |
-
return text
|
| 304 |
-
except Exception as e:
|
| 305 |
-
logger.error(f"PyMuPDF failed for {filename}: {str(e)}")
|
| 306 |
-
# Could implement PDF OCR fallback here if needed
|
| 307 |
-
raise HTTPException(status_code=400, detail=f"Could not extract text from PDF: {str(e)}")
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
if not text.strip():
|
| 318 |
-
logger.warning(f"No text extracted from DOCX: {filename}")
|
| 319 |
-
raise ValueError("No text could be extracted from the document")
|
| 320 |
-
|
| 321 |
-
return text
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
text = content.decode('utf-8', errors='ignore')
|
| 328 |
-
|
| 329 |
-
# For RTF, do basic cleanup of markup
|
| 330 |
-
if mime_type in ['text/rtf', 'application/rtf'] or filename.endswith('.rtf'):
|
| 331 |
-
# Very basic RTF cleaning (would need a proper RTF parser for better results)
|
| 332 |
-
text = re.sub(r'\\[a-zA-Z]+', ' ', text) # Remove RTF commands
|
| 333 |
-
text = re.sub(r'[{}]', '', text) # Remove braces
|
| 334 |
-
text = re.sub(r'\\[0-9]+', '', text) # Remove numeric commands
|
| 335 |
-
|
| 336 |
-
if not text.strip():
|
| 337 |
-
logger.warning(f"No text extracted from text file: {filename}")
|
| 338 |
-
raise ValueError("No text could be extracted from the text file")
|
| 339 |
-
|
| 340 |
-
return text
|
| 341 |
-
except UnicodeDecodeError:
|
| 342 |
-
# Fallback to latin-1 if UTF-8 fails
|
| 343 |
-
text = content.decode('latin-1', errors='ignore')
|
| 344 |
-
return text
|
| 345 |
|
|
|
|
|
|
|
|
|
|
| 346 |
else:
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
status_code=400,
|
| 350 |
-
detail=f"Unsupported file type: {mime_type}. Please upload a PDF, DOCX, TXT, or RTF file"
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
except HTTPException:
|
| 354 |
-
# Re-raise HTTP exceptions
|
| 355 |
-
raise
|
| 356 |
-
except Exception as e:
|
| 357 |
-
logger.error(f"Text extraction failed for {filename}: {str(e)}")
|
| 358 |
-
raise HTTPException(status_code=400, detail=f"Text extraction failed: {str(e)}")
|
| 359 |
-
|
| 360 |
-
# Data visualization with enhanced options and error handling
|
| 361 |
-
def generate_visualization_code(df: pd.DataFrame, visualization_type: str = None) -> tuple:
|
| 362 |
-
"""
|
| 363 |
-
Generate visualization based on data analysis and save to static file
|
| 364 |
-
Returns tuple of (image_path, description)
|
| 365 |
-
"""
|
| 366 |
-
try:
|
| 367 |
-
# Basic data analysis
|
| 368 |
-
num_rows, num_cols = df.shape
|
| 369 |
-
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
| 370 |
-
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
for col in df.columns:
|
| 375 |
-
if pd.api.types.is_datetime64_any_dtype(df[col]):
|
| 376 |
-
date_cols.append(col)
|
| 377 |
-
elif df[col].dtype == 'object':
|
| 378 |
-
# Try to convert to datetime
|
| 379 |
-
try:
|
| 380 |
-
pd.to_datetime(df[col], errors='raise')
|
| 381 |
-
date_cols.append(col)
|
| 382 |
-
except (ValueError, TypeError):
|
| 383 |
-
pass
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
-
|
| 389 |
-
timestamp = int(time.time())
|
| 390 |
-
img_filename = f"viz_{timestamp}.png"
|
| 391 |
-
img_path = os.path.join(IMAGES_DIR, img_filename)
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
for p in ax.patches:
|
| 447 |
-
ax.annotate(f'{p.get_height():.1f}',
|
| 448 |
-
(p.get_x() + p.get_width() / 2., p.get_height()),
|
| 449 |
-
ha='center', va='bottom',
|
| 450 |
-
fontsize=9, color='black',
|
| 451 |
-
xytext=(0, 5), textcoords='offset points')
|
| 452 |
-
|
| 453 |
-
plt.title(f'Comparison of {num_col} by {cat_col}{title_suffix}', fontsize=14)
|
| 454 |
-
plt.xlabel(cat_col, fontsize=12)
|
| 455 |
-
plt.ylabel(num_col, fontsize=12)
|
| 456 |
-
plt.xticks(rotation=45, ha='right')
|
| 457 |
-
plt.grid(axis='y', alpha=0.3)
|
| 458 |
-
plt.tight_layout()
|
| 459 |
-
plt.savefig(img_path)
|
| 460 |
-
plt.close()
|
| 461 |
-
|
| 462 |
-
description = f"Bar chart comparing {num_col} across different {cat_col} categories"
|
| 463 |
-
|
| 464 |
-
elif visualization_type and visualization_type.lower() in ['histogram', 'distribution']:
|
| 465 |
-
if len(numeric_cols) < 1:
|
| 466 |
-
raise ValueError("Need at least 1 numeric column for a histogram")
|
| 467 |
-
|
| 468 |
-
plt.figure(figsize=(10, 6))
|
| 469 |
-
num_col = numeric_cols[0]
|
| 470 |
-
|
| 471 |
-
# Create histogram with KDE
|
| 472 |
-
sns.histplot(df[num_col], kde=True, bins=20, color='purple')
|
| 473 |
-
|
| 474 |
-
# Add mean and median lines
|
| 475 |
-
mean_val = df[num_col].mean()
|
| 476 |
-
median_val = df[num_col].median()
|
| 477 |
-
|
| 478 |
-
plt.axvline(mean_val, color='red', linestyle='--', linewidth=1.5, label=f'Mean: {mean_val:.2f}')
|
| 479 |
-
plt.axvline(median_val, color='green', linestyle='-.', linewidth=1.5, label=f'Median: {median_val:.2f}')
|
| 480 |
-
|
| 481 |
-
plt.title(f'Distribution of {num_col}', fontsize=14)
|
| 482 |
-
plt.xlabel(num_col, fontsize=12)
|
| 483 |
-
plt.ylabel('Frequency', fontsize=12)
|
| 484 |
-
plt.legend()
|
| 485 |
-
plt.grid(True, alpha=0.3)
|
| 486 |
-
plt.tight_layout()
|
| 487 |
-
plt.savefig(img_path)
|
| 488 |
-
plt.close()
|
| 489 |
-
|
| 490 |
-
# Get descriptive stats for the column
|
| 491 |
-
desc_stats = df[num_col].describe()
|
| 492 |
-
|
| 493 |
-
description = (f"Histogram showing distribution of {num_col}\n"
|
| 494 |
-
f"Mean: {desc_stats['mean']:.2f}, Median: {median_val:.2f}\n"
|
| 495 |
-
f"Min: {desc_stats['min']:.2f}, Max: {desc_stats['max']:.2f}\n"
|
| 496 |
-
f"Std Dev: {desc_stats['std']:.2f}")
|
| 497 |
-
|
| 498 |
-
else: # Default dashboard with multiple plots
|
| 499 |
-
# Create dashboard with multiple plots
|
| 500 |
-
fig, axes = plt.subplots(2, 2, figsize=(16, 12))
|
| 501 |
-
fig.suptitle('Data Dashboard', fontsize=16)
|
| 502 |
-
|
| 503 |
-
# Plot 1: Correlation matrix (top-left)
|
| 504 |
-
if len(numeric_cols) > 1:
|
| 505 |
-
corr_matrix = df[numeric_cols].corr()
|
| 506 |
-
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=axes[0, 0])
|
| 507 |
-
axes[0, 0].set_title('Correlation Matrix')
|
| 508 |
else:
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
else:
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
|
|
|
| 538 |
|
| 539 |
-
|
| 540 |
-
axes[1, 0].set_title(f'{num_col} by {cat_col}{title_suffix}')
|
| 541 |
-
axes[1, 0].set_xticklabels(axes[1, 0].get_xticklabels(), rotation=45, ha='right')
|
| 542 |
else:
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
else:
|
| 558 |
-
|
| 559 |
-
title_suffix = ""
|
| 560 |
-
|
| 561 |
-
sns.boxplot(x=cat_col, y=num_col, data=df_plot, ax=axes[1, 1], palette='Set3')
|
| 562 |
-
axes[1, 1].set_title(f'Distribution of {num_col} by {cat_col}{title_suffix}')
|
| 563 |
-
axes[1, 1].set_xticklabels(axes[1, 1].get_xticklabels(), rotation=45, ha='right')
|
| 564 |
else:
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
axes[1, 1].axis('off')
|
| 568 |
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
|
| 573 |
-
#
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
f"Numeric columns: {', '.join(numeric_cols[:5])}{'...' if len(numeric_cols) > 5 else ''}\n"
|
| 577 |
-
f"Categorical columns: {', '.join(categorical_cols[:5])}{'...' if len(categorical_cols) > 5 else ''}")
|
| 578 |
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
If target_lang is "all", returns dict of language:translation
|
| 590 |
-
"""
|
| 591 |
-
try:
|
| 592 |
-
tokenizer, model = load_model("translation")
|
| 593 |
-
|
| 594 |
-
# If requesting translation to all supported languages
|
| 595 |
-
if target_lang == "all":
|
| 596 |
-
results = {}
|
| 597 |
-
for lang_code in LANGUAGE_MAPPING.values():
|
| 598 |
-
try:
|
| 599 |
-
tokenizer.src_lang = "en" # Assuming source is English
|
| 600 |
-
tokenizer.tgt_lang = lang_code
|
| 601 |
-
encoded = tokenizer(text, return_tensors="pt")
|
| 602 |
-
generated_tokens = model.generate(
|
| 603 |
-
**encoded,
|
| 604 |
-
forced_bos_token_id=tokenizer.get_lang_id(lang_code),
|
| 605 |
-
max_length=512
|
| 606 |
-
)
|
| 607 |
-
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 608 |
-
results[LANGUAGE_CODE_TO_NAME.get(lang_code, lang_code)] = translation
|
| 609 |
-
except Exception as lang_error:
|
| 610 |
-
logger.error(f"Translation to {lang_code} failed: {str(lang_error)}")
|
| 611 |
-
results[LANGUAGE_CODE_TO_NAME.get(lang_code, lang_code)] = f"Translation failed: {str(lang_error)}"
|
| 612 |
|
| 613 |
-
return results
|
| 614 |
else:
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
# Check if target_lang is valid
|
| 619 |
-
if target_lang not in LANGUAGE_MAPPING.values():
|
| 620 |
-
# Try to find it in the values
|
| 621 |
-
for lang_name, lang_code in LANGUAGE_MAPPING.items():
|
| 622 |
-
if target_lang.lower() == lang_name:
|
| 623 |
-
target_lang = lang_code
|
| 624 |
-
break
|
| 625 |
-
else:
|
| 626 |
-
logger.warning(f"Unsupported target language: {target_lang}, defaulting to English")
|
| 627 |
-
return text # Return original text if language not supported
|
| 628 |
-
|
| 629 |
-
tokenizer.tgt_lang = target_lang
|
| 630 |
-
encoded = tokenizer(text, return_tensors="pt")
|
| 631 |
-
generated_tokens = model.generate(
|
| 632 |
-
**encoded,
|
| 633 |
-
forced_bos_token_id=tokenizer.get_lang_id(target_lang),
|
| 634 |
-
max_length=512
|
| 635 |
-
)
|
| 636 |
-
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 637 |
-
return translation
|
| 638 |
|
| 639 |
except Exception as e:
|
| 640 |
-
logger.error(f"
|
| 641 |
-
raise HTTPException(status_code=500, detail=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
|
| 643 |
-
# Creative text generation with enhanced Gemini capabilities
|
| 644 |
-
async def generate_creative_text(prompt: str) -> str:
|
| 645 |
-
"""Generate creative text content using Gemini model"""
|
| 646 |
try:
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 675 |
)
|
| 676 |
-
|
| 677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
except Exception as e:
|
| 679 |
-
logger.error(f"
|
| 680 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
from fastapi.responses import RedirectResponse, JSONResponse, HTMLResponse
|
| 4 |
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 5 |
+
from typing import Optional, Dict, Any, List
|
| 6 |
import logging
|
| 7 |
import time
|
| 8 |
import os
|
|
|
|
| 19 |
from pydantic import BaseModel
|
| 20 |
import asyncio
|
| 21 |
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Configure logging
|
| 24 |
logging.basicConfig(
|
|
|
|
| 27 |
)
|
| 28 |
logger = logging.getLogger("cosmic_ai")
|
| 29 |
|
| 30 |
+
# Create app directory if it doesn't exist
|
| 31 |
+
upload_dir = os.getenv('UPLOAD_DIR', '/tmp/uploads')
|
| 32 |
+
os.makedirs(upload_dir, exist_ok=True)
|
|
|
|
| 33 |
|
| 34 |
+
app = FastAPI(
|
| 35 |
+
title="Cosmic AI Assistant",
|
| 36 |
+
description="An advanced AI assistant with space-themed interface, translation, and file question-answering features",
|
| 37 |
+
version="2.0.0"
|
| 38 |
+
)
|
| 39 |
|
| 40 |
+
# Mount static files
|
| 41 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
|
|
| 42 |
|
| 43 |
+
# Mount videos directory
|
| 44 |
+
app.mount("/videos", StaticFiles(directory="videos"), name="videos")
|
|
|
|
| 45 |
|
| 46 |
+
# Mount images directory
|
| 47 |
+
app.mount("/images", StaticFiles(directory="images"), name="images")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Gemini API Configuration
|
| 50 |
+
API_KEY = "AIzaSyCwmgD8KxzWiuivtySNtcZF_rfTvx9s9sY" # Replace with your actual API key
|
| 51 |
+
genai.configure(api_key=API_KEY)
|
| 52 |
|
| 53 |
# Model configurations
|
| 54 |
MODELS = {
|
|
|
|
| 57 |
"visual-qa": "dandelin/vilt-b32-finetuned-vqa",
|
| 58 |
"chatbot": "gemini-1.5-pro",
|
| 59 |
"translation": "facebook/m2m100_418M",
|
| 60 |
+
"file-qa": "distilbert-base-cased-distilled-squad" # New model for file QA
|
|
|
|
| 61 |
}
|
| 62 |
|
| 63 |
+
# Supported languages for translation
|
| 64 |
+
SUPPORTED_LANGUAGES = {
|
| 65 |
+
"english": "en",
|
| 66 |
+
"french": "fr",
|
| 67 |
+
"german": "de",
|
| 68 |
+
"spanish": "es",
|
| 69 |
+
"italian": "it",
|
| 70 |
+
"russian": "ru",
|
| 71 |
+
"chinese": "zh",
|
| 72 |
+
"japanese": "ja",
|
| 73 |
+
"arabic": "ar",
|
| 74 |
+
"hindi": "hi",
|
| 75 |
+
"portuguese": "pt",
|
| 76 |
+
"korean": "ko"
|
| 77 |
+
}
|
| 78 |
|
| 79 |
+
# Global variables for pre-loaded translation model
|
| 80 |
+
translation_model = None
|
| 81 |
+
translation_tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# Cache for model loading (excluding translation)
|
| 84 |
@lru_cache(maxsize=8)
|
| 85 |
def load_model(task: str, model_name: str = None):
|
| 86 |
"""Cached model loader with proper task names and error handling"""
|
| 87 |
try:
|
| 88 |
+
logger.info(f"Loading model for task: {task}, model: {model_name or MODELS.get(task)}")
|
| 89 |
start_time = time.time()
|
|
|
|
| 90 |
|
| 91 |
+
model_to_load = model_name or MODELS.get(task)
|
|
|
|
| 92 |
|
| 93 |
+
if task == "chatbot":
|
|
|
|
| 94 |
return genai.GenerativeModel(model_to_load)
|
| 95 |
+
|
|
|
|
| 96 |
if task == "visual-qa":
|
| 97 |
processor = ViltProcessor.from_pretrained(model_to_load)
|
| 98 |
model = ViltForQuestionAnswering.from_pretrained(model_to_load)
|
|
|
|
| 102 |
def vqa_function(image, question, **generate_kwargs):
|
| 103 |
if image.mode != "RGB":
|
| 104 |
image = image.convert("RGB")
|
|
|
|
| 105 |
inputs = processor(image, question, return_tensors="pt").to(device)
|
| 106 |
logger.info(f"VQA inputs - question: {question}, image size: {image.size}")
|
|
|
|
| 107 |
with torch.no_grad():
|
| 108 |
outputs = model(**inputs)
|
| 109 |
+
logits = outputs.logits
|
| 110 |
+
idx = logits.argmax(-1).item()
|
| 111 |
+
answer = model.config.id2label[idx]
|
|
|
|
| 112 |
logger.info(f"VQA raw output: {answer}")
|
| 113 |
return answer
|
| 114 |
|
| 115 |
return vqa_function
|
| 116 |
|
| 117 |
+
return pipeline(task, model=model_to_load)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
except Exception as e:
|
| 120 |
logger.error(f"Model load failed: {str(e)}")
|
| 121 |
raise HTTPException(status_code=500, detail=f"Model loading failed: {task} - {str(e)}")
|
| 122 |
|
| 123 |
+
def get_gemini_response(user_input: str, is_generation: bool = False):
|
| 124 |
+
"""Function to generate response with Gemini for both chat and text generation"""
|
| 125 |
+
if not user_input:
|
| 126 |
+
return "Please provide some input."
|
|
|
|
|
|
|
|
|
|
| 127 |
try:
|
| 128 |
+
chatbot = load_model("chatbot")
|
| 129 |
+
if is_generation:
|
| 130 |
+
prompt = f"Generate creative text based on this prompt: {user_input}"
|
| 131 |
+
else:
|
| 132 |
+
prompt = user_input
|
| 133 |
+
response = chatbot.generate_content(prompt)
|
| 134 |
+
return response.text.strip()
|
| 135 |
except Exception as e:
|
| 136 |
+
return f"Error: {str(e)}"
|
| 137 |
+
|
| 138 |
+
def translate_text(text: str, target_language: str):
|
| 139 |
+
"""Translate text to any target language using pre-loaded M2M100 model"""
|
| 140 |
+
if not text:
|
| 141 |
+
return "Please provide text to translate."
|
| 142 |
|
| 143 |
try:
|
| 144 |
+
global translation_model, translation_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
target_lang = target_language.lower()
|
| 147 |
+
if target_lang not in SUPPORTED_LANGUAGES:
|
| 148 |
+
similar = [lang for lang in SUPPORTED_LANGUAGES if target_lang in lang or lang in target_lang]
|
| 149 |
+
if similar:
|
| 150 |
+
target_lang = similar[0]
|
| 151 |
+
else:
|
| 152 |
+
return f"Language '{target_language}' not supported. Available languages: {', '.join(SUPPORTED_LANGUAGES.keys())}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
lang_code = SUPPORTED_LANGUAGES[target_lang]
|
| 155 |
+
|
| 156 |
+
if translation_model is None or translation_tokenizer is None:
|
| 157 |
+
raise Exception("Translation model not initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
match = re.search(r'how to say\s+(.+?)\s+in\s+(\w+)', text.lower())
|
| 160 |
+
if match:
|
| 161 |
+
text_to_translate = match.group(1)
|
| 162 |
else:
|
| 163 |
+
content_match = re.search(r'(?:translate|convert).*to\s+[a-zA-Z]+\s*[:\s]*(.+)', text, re.IGNORECASE)
|
| 164 |
+
text_to_translate = content_match.group(1) if content_match else text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
translation_tokenizer.src_lang = "en"
|
| 167 |
+
encoded = translation_tokenizer(text_to_translate, return_tensors="pt", padding=True, truncation=True).to(translation_model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
start_time = time.time()
|
| 170 |
+
generated_tokens = translation_model.generate(
|
| 171 |
+
**encoded,
|
| 172 |
+
forced_bos_token_id=translation_tokenizer.get_lang_id(lang_code),
|
| 173 |
+
max_length=512,
|
| 174 |
+
num_beams=1,
|
| 175 |
+
early_stopping=True
|
| 176 |
+
)
|
| 177 |
+
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 178 |
+
logger.info(f"Translation took {time.time() - start_time:.2f} seconds")
|
| 179 |
|
| 180 |
+
return translated_text
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logger.error(f"Translation error: {str(e)}", exc_info=True)
|
| 184 |
+
return f"Translation error: {str(e)}"
|
| 185 |
+
|
| 186 |
+
def detect_intent(text: str = None, file: UploadFile = None) -> tuple[str, str]:
|
| 187 |
+
"""Enhanced intent detection with dynamic translation and file QA support"""
|
| 188 |
+
target_language = "English" # Default
|
| 189 |
+
|
| 190 |
+
if file:
|
| 191 |
+
content_type = file.content_type.lower() if file.content_type else ""
|
| 192 |
+
filename = file.filename.lower() if file.filename else ""
|
| 193 |
+
|
| 194 |
+
if content_type.startswith('image/') and text:
|
| 195 |
+
text_lower = text.lower()
|
| 196 |
+
if "what’s this" in text_lower:
|
| 197 |
+
return "visual-qa", target_language
|
| 198 |
+
if "does this fly" in text_lower:
|
| 199 |
+
return "visual-qa", target_language
|
| 200 |
+
if "fly" in text_lower and any(q in text_lower for q in ['does', 'can', 'will']):
|
| 201 |
+
return "visual-qa", target_language
|
| 202 |
+
|
| 203 |
+
if content_type.startswith('image/'):
|
| 204 |
+
if text and any(q in text.lower() for q in ['what is', 'what\'s', 'describe', 'tell me about', 'explain','how many', 'what color', 'is there', 'are they', 'does the']):
|
| 205 |
+
return "visual-qa", target_language
|
| 206 |
+
return "image-to-text", target_language
|
| 207 |
+
elif filename.endswith(('.xlsx', '.xls', '.csv')):
|
| 208 |
+
return "visualize", target_language
|
| 209 |
+
elif filename.endswith(('.pdf', '.docx', '.doc', '.txt', '.rtf')):
|
| 210 |
+
if text and any(q in text.lower() for q in ['what is', 'who is', 'where', 'when', 'why', 'how', 'what are', 'who are']):
|
| 211 |
+
return "file-qa", target_language # New intent for file QA
|
| 212 |
+
return "summarize", target_language
|
| 213 |
+
|
| 214 |
+
if not text:
|
| 215 |
+
return "chatbot", target_language
|
| 216 |
+
|
| 217 |
+
text_lower = text.lower()
|
| 218 |
+
|
| 219 |
+
if any(keyword in text_lower for keyword in ['chat', 'talk', 'converse', 'ask gemini']):
|
| 220 |
+
return "chatbot", target_language
|
| 221 |
+
|
| 222 |
+
translate_patterns = [
|
| 223 |
+
r'translate.*to\s+\[?([a-zA-Z]+)\]?:?\s*(.*)',
|
| 224 |
+
r'convert.*to\s+\[?([a-zA-Z]+)\]?:?\s*(.*)',
|
| 225 |
+
r'how to say.*in\s+\[?([a-zA-Z]+)\]?:?\s*(.*)'
|
| 226 |
+
]
|
| 227 |
+
|
| 228 |
+
for pattern in translate_patterns:
|
| 229 |
+
translate_match = re.search(pattern, text_lower)
|
| 230 |
+
if translate_match:
|
| 231 |
+
potential_lang = translate_match.group(1).lower()
|
| 232 |
+
if potential_lang in SUPPORTED_LANGUAGES:
|
| 233 |
+
target_language = potential_lang.capitalize()
|
| 234 |
+
return "translate", target_language
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
else:
|
| 236 |
+
logger.warning(f"Invalid language detected: {potential_lang}")
|
| 237 |
+
return "chatbot", target_language
|
| 238 |
+
|
| 239 |
+
vqa_patterns = [
|
| 240 |
+
r'how (many|much)',
|
| 241 |
+
r'what (color|size|position|shape)',
|
| 242 |
+
r'is (there|that|this) (a|an)',
|
| 243 |
+
r'are (they|there) (any|some)',
|
| 244 |
+
r'does (the|this) (image|picture) (show|contain)'
|
| 245 |
+
]
|
| 246 |
+
|
| 247 |
+
if any(re.search(pattern, text_lower) for pattern in vqa_patterns):
|
| 248 |
+
return "visual-qa", target_language
|
| 249 |
+
|
| 250 |
+
summarization_patterns = [
|
| 251 |
+
r'\b(summar(y|ize|ise)|brief( overview)?)\b',
|
| 252 |
+
r'\b(long article|text|document)\b',
|
| 253 |
+
r'\bcan you (summar|brief|condense)\b',
|
| 254 |
+
r'\b(short summary|brief explanation)\b',
|
| 255 |
+
r'\b(overview|main points|key ideas)\b',
|
| 256 |
+
r'\b(tl;?dr|too long didn\'?t read)\b'
|
| 257 |
+
]
|
| 258 |
+
|
| 259 |
+
if any(re.search(pattern, text_lower) for pattern in summarization_patterns):
|
| 260 |
+
return "summarize", target_language
|
| 261 |
+
|
| 262 |
+
generation_patterns = [
|
| 263 |
+
r'\b(write|generate|create|compose)\b',
|
| 264 |
+
r'\b(story|poem|essay|text|content)\b'
|
| 265 |
+
]
|
| 266 |
+
|
| 267 |
+
if any(re.search(pattern, text_lower) for pattern in generation_patterns):
|
| 268 |
+
return "text-generation", target_language
|
| 269 |
+
|
| 270 |
+
if len(text) > 100:
|
| 271 |
+
return "summarize", target_language
|
| 272 |
+
|
| 273 |
+
if file and file.content_type and file.content_type.startswith('image/'):
|
| 274 |
+
if text and "what’s this" in text_lower:
|
| 275 |
+
return "visual-qa", target_language
|
| 276 |
+
if text and any(q in text_lower for q in ['does this', 'is this', 'can this']):
|
| 277 |
+
return "visual-qa", target_language
|
| 278 |
+
|
| 279 |
+
return "chatbot", target_language
|
| 280 |
+
|
| 281 |
+
class ProcessResponse(BaseModel):
|
| 282 |
+
response: str
|
| 283 |
+
type: str
|
| 284 |
+
additional_data: Optional[Dict[str, Any]] = None
|
| 285 |
+
|
| 286 |
+
@app.get("/chatbot")
|
| 287 |
+
async def chatbot_interface():
|
| 288 |
+
"""Redirect to the static index.html file for the chatbot interface"""
|
| 289 |
+
return RedirectResponse(url="/static/index.html")
|
| 290 |
+
|
| 291 |
+
@app.post("/chat")
|
| 292 |
+
async def chat_endpoint(data: dict):
|
| 293 |
+
message = data.get("message", "")
|
| 294 |
+
if not message:
|
| 295 |
+
raise HTTPException(status_code=400, detail="No message provided")
|
| 296 |
+
try:
|
| 297 |
+
response = get_gemini_response(message)
|
| 298 |
+
return {"response": response}
|
| 299 |
+
except Exception as e:
|
| 300 |
+
raise HTTPException(status_code=500, detail=f"Chat error: {str(e)}")
|
| 301 |
+
|
| 302 |
+
@app.post("/process", response_model=ProcessResponse)
|
| 303 |
+
async def process_input(
|
| 304 |
+
request: Request,
|
| 305 |
+
text: str = Form(None),
|
| 306 |
+
file: UploadFile = File(None)
|
| 307 |
+
):
|
| 308 |
+
"""Enhanced unified endpoint with dynamic translation and file QA"""
|
| 309 |
+
start_time = time.time()
|
| 310 |
+
client_ip = request.client.host
|
| 311 |
+
logger.info(f"Request from {client_ip}: text={text[:50] + '...' if text and len(text) > 50 else text}, file={file.filename if file else None}")
|
| 312 |
+
|
| 313 |
+
intent, target_language = detect_intent(text, file)
|
| 314 |
+
logger.info(f"Detected intent: {intent}, target_language: {target_language}")
|
| 315 |
+
|
| 316 |
+
try:
|
| 317 |
+
if intent == "chatbot":
|
| 318 |
+
response = get_gemini_response(text)
|
| 319 |
+
return {"response": response, "type": "chat"}
|
| 320 |
+
|
| 321 |
+
elif intent == "translate":
|
| 322 |
+
content = await extract_text_from_file(file) if file else text
|
| 323 |
+
if "all languages" in text.lower():
|
| 324 |
+
translations = {}
|
| 325 |
+
phrase_to_translate = "I want to explore the stars" if "I want to explore the stars" in text else content
|
| 326 |
+
for lang, code in SUPPORTED_LANGUAGES.items():
|
| 327 |
+
translation_tokenizer.src_lang = "en"
|
| 328 |
+
encoded = translation_tokenizer(phrase_to_translate, return_tensors="pt").to(translation_model.device)
|
| 329 |
+
generated_tokens = translation_model.generate(
|
| 330 |
+
**encoded,
|
| 331 |
+
forced_bos_token_id=translation_tokenizer.get_lang_id(code),
|
| 332 |
+
max_length=512,
|
| 333 |
+
num_beams=1
|
| 334 |
+
)
|
| 335 |
+
translations[lang] = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 336 |
+
response = "\n".join(f"{lang.capitalize()}: {translations[lang]}" for lang in translations)
|
| 337 |
+
logger.info(f"Translated to all supported languages: {', '.join(translations.keys())}")
|
| 338 |
+
return {"response": response, "type": "translation"}
|
| 339 |
else:
|
| 340 |
+
translated_text = translate_text(content, target_language)
|
| 341 |
+
return {"response": translated_text, "type": "translation"}
|
| 342 |
+
|
| 343 |
+
elif intent == "summarize":
|
| 344 |
+
content = await extract_text_from_file(file) if file else text
|
| 345 |
+
summarizer = load_model("summarization")
|
| 346 |
+
|
| 347 |
+
content_length = len(content.split())
|
| 348 |
+
max_len = max(30, min(150, content_length//2))
|
| 349 |
+
min_len = max(15, min(30, max_len//2))
|
| 350 |
+
|
| 351 |
+
if len(content) > 1024:
|
| 352 |
+
chunks = [content[i:i+1024] for i in range(0, len(content), 1024)]
|
| 353 |
+
summaries = []
|
| 354 |
|
| 355 |
+
for chunk in chunks[:3]:
|
| 356 |
+
summary = summarizer(
|
| 357 |
+
chunk,
|
| 358 |
+
max_length=max_len,
|
| 359 |
+
min_length=min_len,
|
| 360 |
+
do_sample=False,
|
| 361 |
+
truncation=True
|
| 362 |
+
)
|
| 363 |
+
summaries.append(summary[0]['summary_text'])
|
| 364 |
|
| 365 |
+
final_summary = " ".join(summaries)
|
|
|
|
|
|
|
| 366 |
else:
|
| 367 |
+
summary = summarizer(
|
| 368 |
+
content,
|
| 369 |
+
max_length=max_len,
|
| 370 |
+
min_length=min_len,
|
| 371 |
+
do_sample=False,
|
| 372 |
+
truncation=True
|
| 373 |
+
)
|
| 374 |
+
final_summary = summary[0]['summary_text']
|
| 375 |
+
|
| 376 |
+
final_summary = re.sub(r'\s+', ' ', final_summary).strip()
|
| 377 |
+
return {"response": final_summary, "type": "summary"}
|
| 378 |
+
|
| 379 |
+
elif intent == "image-to-text":
|
| 380 |
+
if not file or not file.content_type.startswith('image/'):
|
| 381 |
+
raise HTTPException(status_code=400, detail="An image file is required")
|
| 382 |
+
|
| 383 |
+
image = Image.open(io.BytesIO(await file.read()))
|
| 384 |
+
captioner = load_model("image-to-text")
|
| 385 |
+
|
| 386 |
+
caption = captioner(image, max_new_tokens=50)
|
| 387 |
+
|
| 388 |
+
return {"response": caption[0]['generated_text'], "type": "caption"}
|
| 389 |
+
|
| 390 |
+
elif intent == "visual-qa":
|
| 391 |
+
if not file or not file.content_type.startswith('image/'):
|
| 392 |
+
raise HTTPException(status_code=400, detail="An image file is required")
|
| 393 |
+
if not text:
|
| 394 |
+
raise HTTPException(status_code=400, detail="A question is required for VQA")
|
| 395 |
+
|
| 396 |
+
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
| 397 |
+
vqa_pipeline = load_model("visual-qa")
|
| 398 |
+
|
| 399 |
+
question = text.strip()
|
| 400 |
+
if not question.endswith('?'):
|
| 401 |
+
question += '?'
|
| 402 |
+
|
| 403 |
+
answer = vqa_pipeline(
|
| 404 |
+
image=image,
|
| 405 |
+
question=question
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
answer = answer.strip()
|
| 409 |
+
if not answer or answer.lower() == question.lower():
|
| 410 |
+
logger.warning(f"VQA failed to generate a meaningful answer: {answer}")
|
| 411 |
+
answer = "I couldn't determine the answer from the image."
|
| 412 |
+
else:
|
| 413 |
+
answer = answer.capitalize()
|
| 414 |
+
if not answer.endswith(('.', '!', '?')):
|
| 415 |
+
answer += '.'
|
| 416 |
+
chatbot = load_model("chatbot")
|
| 417 |
+
if "fly" in question.lower():
|
| 418 |
+
answer = chatbot.generate_content(f"Make this fun and spacey: {answer}").text.strip()
|
| 419 |
+
else:
|
| 420 |
+
answer = chatbot.generate_content(f"Make this cosmic and poetic: {answer}").text.strip()
|
| 421 |
+
|
| 422 |
+
logger.info(f"Final VQA answer: {answer}")
|
| 423 |
+
|
| 424 |
+
return {
|
| 425 |
+
"response": answer,
|
| 426 |
+
"type": "visual_qa",
|
| 427 |
+
"additional_data": {
|
| 428 |
+
"question": text,
|
| 429 |
+
"image_size": f"{image.width}x{image.height}"
|
| 430 |
+
}
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
elif intent == "visualize":
|
| 434 |
+
if not file:
|
| 435 |
+
raise HTTPException(status_code=400, detail="An Excel file is required")
|
| 436 |
+
|
| 437 |
+
file_content = await file.read()
|
| 438 |
+
|
| 439 |
+
if file.filename.endswith('.csv'):
|
| 440 |
+
df = pd.read_csv(io.BytesIO(file_content))
|
| 441 |
+
else:
|
| 442 |
+
df = pd.read_excel(io.BytesIO(file_content))
|
| 443 |
+
|
| 444 |
+
code = generate_visualization_code(df, text)
|
| 445 |
+
stats = df.describe().to_string()
|
| 446 |
+
response = f"Stats:\n{stats}\n\nChart Code:\n{code}"
|
| 447 |
+
|
| 448 |
+
return {"response": response, "type": "visualization_code"}
|
| 449 |
+
|
| 450 |
+
elif intent == "text-generation":
|
| 451 |
+
response = get_gemini_response(text, is_generation=True)
|
| 452 |
+
lines = response.split(". ")
|
| 453 |
+
formatted_poem = "\n".join(line.strip() + ("." if not line.endswith(".") else "") for line in lines if line)
|
| 454 |
+
return {"response": formatted_poem, "type": "generated_text"}
|
| 455 |
+
|
| 456 |
+
elif intent == "file-qa":
|
| 457 |
+
if not file or not file.filename.lower().endswith(('.pdf', '.docx', '.doc', '.txt', '.rtf')):
|
| 458 |
+
raise HTTPException(status_code=400, detail="A text-based file (PDF, DOCX, TXT, RTF) is required")
|
| 459 |
+
if not text:
|
| 460 |
+
raise HTTPException(status_code=400, detail="A question about the file is required")
|
| 461 |
+
|
| 462 |
+
content = await extract_text_from_file(file)
|
| 463 |
+
if not content.strip():
|
| 464 |
+
raise HTTPException(status_code=400, detail="No text could be extracted from the file")
|
| 465 |
+
|
| 466 |
+
qa_pipeline = load_model("file-qa")
|
| 467 |
+
|
| 468 |
+
question = text.strip()
|
| 469 |
+
if not question.endswith('?'):
|
| 470 |
+
question += '?'
|
| 471 |
+
|
| 472 |
+
# Chunk content if too long (model context limit ~512 tokens)
|
| 473 |
+
if len(content) > 1024:
|
| 474 |
+
chunks = [content[i:i+1024] for i in range(0, len(content), 1024)]
|
| 475 |
+
answers = []
|
| 476 |
+
for chunk in chunks[:3]: # Limit to 3 chunks to avoid excessive processing
|
| 477 |
+
result = qa_pipeline(question=question, context=chunk)
|
| 478 |
+
if result['score'] > 0.1: # Only include high-confidence answers
|
| 479 |
+
answers.append((result['answer'], result['score']))
|
| 480 |
+
if answers:
|
| 481 |
+
# Select the answer with the highest confidence score
|
| 482 |
+
best_answer = max(answers, key=lambda x: x[1])[0]
|
| 483 |
else:
|
| 484 |
+
best_answer = "I couldn't find a clear answer in the document."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
else:
|
| 486 |
+
result = qa_pipeline(question=question, context=content)
|
| 487 |
+
best_answer = result['answer'] if result['score'] > 0.1 else "I couldn't find a clear answer in the document."
|
|
|
|
| 488 |
|
| 489 |
+
best_answer = best_answer.strip().capitalize()
|
| 490 |
+
if not best_answer.endswith(('.', '!', '?')):
|
| 491 |
+
best_answer += '.'
|
| 492 |
|
| 493 |
+
# Add cosmic tone
|
| 494 |
+
chatbot = load_model("chatbot")
|
| 495 |
+
final_answer = chatbot.generate_content(f"Make this cosmic and poetic: {best_answer}").text.strip()
|
|
|
|
|
|
|
| 496 |
|
| 497 |
+
logger.info(f"File QA answer: {final_answer}")
|
| 498 |
+
|
| 499 |
+
return {
|
| 500 |
+
"response": final_answer,
|
| 501 |
+
"type": "file_qa",
|
| 502 |
+
"additional_data": {
|
| 503 |
+
"question": text,
|
| 504 |
+
"file_name": file.filename
|
| 505 |
+
}
|
| 506 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 507 |
|
|
|
|
| 508 |
else:
|
| 509 |
+
response = get_gemini_response(text or "Hello! How can I assist you?")
|
| 510 |
+
return {"response": response, "type": "chat"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
except Exception as e:
|
| 513 |
+
logger.error(f"Processing error: {str(e)}", exc_info=True)
|
| 514 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 515 |
+
finally:
|
| 516 |
+
process_time = time.time() - start_time
|
| 517 |
+
logger.info(f"Request processed in {process_time:.2f} seconds")
|
| 518 |
+
|
| 519 |
+
async def extract_text_from_file(file: UploadFile) -> str:
|
| 520 |
+
"""Enhanced text extraction with multiple fallbacks"""
|
| 521 |
+
if not file:
|
| 522 |
+
return ""
|
| 523 |
+
|
| 524 |
+
content = await file.read()
|
| 525 |
+
filename = file.filename.lower()
|
| 526 |
|
|
|
|
|
|
|
|
|
|
| 527 |
try:
|
| 528 |
+
if filename.endswith('.pdf'):
|
| 529 |
+
try:
|
| 530 |
+
doc = fitz.open(stream=content, filetype="pdf")
|
| 531 |
+
if doc.is_encrypted:
|
| 532 |
+
return "PDF is encrypted and cannot be read"
|
| 533 |
+
text = ""
|
| 534 |
+
for page in doc:
|
| 535 |
+
text += page.get_text()
|
| 536 |
+
return text
|
| 537 |
+
except Exception as pdf_error:
|
| 538 |
+
logger.warning(f"PyMuPDF failed: {str(pdf_error)}. Trying pdfminer.six...")
|
| 539 |
+
from pdfminer.high_level import extract_text
|
| 540 |
+
from io import BytesIO
|
| 541 |
+
return extract_text(BytesIO(content))
|
| 542 |
+
|
| 543 |
+
elif filename.endswith(('.docx', '.doc')):
|
| 544 |
+
doc = Document(io.BytesIO(content))
|
| 545 |
+
return "\n".join(para.text for para in doc.paragraphs)
|
| 546 |
+
|
| 547 |
+
elif filename.endswith('.txt'):
|
| 548 |
+
return content.decode('utf-8', errors='replace')
|
| 549 |
+
|
| 550 |
+
elif filename.endswith('.rtf'):
|
| 551 |
+
text = content.decode('utf-8', errors='replace')
|
| 552 |
+
text = re.sub(r'\\[a-z]+', ' ', text)
|
| 553 |
+
text = re.sub(r'\{|\}|\\', '', text)
|
| 554 |
+
return text
|
| 555 |
+
|
| 556 |
+
else:
|
| 557 |
+
raise HTTPException(status_code=400, detail=f"Unsupported file format: {filename}")
|
| 558 |
+
|
| 559 |
+
except Exception as e:
|
| 560 |
+
logger.error(f"File extraction error: {str(e)}", exc_info=True)
|
| 561 |
+
raise HTTPException(
|
| 562 |
+
status_code=500,
|
| 563 |
+
detail=f"Error extracting text: {str(e)}. Supported formats: PDF, DOCX, TXT, RTF"
|
| 564 |
)
|
| 565 |
+
|
| 566 |
+
def generate_visualization_code(df: pd.DataFrame, request: str = None) -> str:
|
| 567 |
+
"""Generate visualization code based on data analysis"""
|
| 568 |
+
num_rows, num_cols = df.shape
|
| 569 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
| 570 |
+
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
|
| 571 |
+
date_cols = [col for col in df.columns if df[col].dtype == 'datetime64[ns]' or
|
| 572 |
+
(isinstance(df[col].dtype, object) and pd.to_datetime(df[col], errors='coerce').notna().all())]
|
| 573 |
+
|
| 574 |
+
if request:
|
| 575 |
+
request_lower = request.lower()
|
| 576 |
+
else:
|
| 577 |
+
request_lower = ""
|
| 578 |
+
|
| 579 |
+
if len(numeric_cols) >= 2 and ("scatter" in request_lower or "correlation" in request_lower):
|
| 580 |
+
x_col = numeric_cols[0]
|
| 581 |
+
y_col = numeric_cols[1]
|
| 582 |
+
return f"""import pandas as pd
|
| 583 |
+
import matplotlib.pyplot as plt
|
| 584 |
+
import seaborn as sns
|
| 585 |
+
df = pd.read_excel('data.xlsx')
|
| 586 |
+
plt.figure(figsize=(10, 6))
|
| 587 |
+
sns.regplot(x='{x_col}', y='{y_col}', data=df, scatter_kws={{'alpha': 0.6}})
|
| 588 |
+
plt.title('Correlation between {x_col} and {y_col}')
|
| 589 |
+
plt.grid(True, alpha=0.3)
|
| 590 |
+
plt.tight_layout()
|
| 591 |
+
plt.savefig('correlation_plot.png')
|
| 592 |
+
plt.show()
|
| 593 |
+
correlation = df['{x_col}'].corr(df['{y_col}'])
|
| 594 |
+
print(f"Correlation coefficient: {{correlation:.4f}}")"""
|
| 595 |
+
|
| 596 |
+
elif len(numeric_cols) >= 1 and len(categorical_cols) >= 1 and ("bar" in request_lower or "comparison" in request_lower):
|
| 597 |
+
cat_col = categorical_cols[0]
|
| 598 |
+
num_col = numeric_cols[0]
|
| 599 |
+
return f"""import pandas as pd
|
| 600 |
+
import matplotlib.pyplot as plt
|
| 601 |
+
import seaborn as sns
|
| 602 |
+
df = pd.read_excel('data.xlsx')
|
| 603 |
+
plt.figure(figsize=(12, 7))
|
| 604 |
+
ax = sns.barplot(x='{cat_col}', y='{num_col}', data=df, palette='viridis')
|
| 605 |
+
for p in ax.patches:
|
| 606 |
+
ax.annotate(f'{{p.get_height():.1f}}',
|
| 607 |
+
(p.get_x() + p.get_width() / 2., p.get_height()),
|
| 608 |
+
ha='center', va='bottom', fontsize=10, color='black', xytext=(0, 5),
|
| 609 |
+
textcoords='offset points')
|
| 610 |
+
plt.title('Comparison of {num_col} by {cat_col}', fontsize=15)
|
| 611 |
+
plt.xlabel('{cat_col}', fontsize=12)
|
| 612 |
+
plt.ylabel('{num_col}', fontsize=12)
|
| 613 |
+
plt.xticks(rotation=45, ha='right')
|
| 614 |
+
plt.grid(axis='y', alpha=0.3)
|
| 615 |
+
plt.tight_layout()
|
| 616 |
+
plt.savefig('comparison_chart.png')
|
| 617 |
+
plt.show()"""
|
| 618 |
+
|
| 619 |
+
elif len(numeric_cols) >= 1 and ("distribution" in request_lower or "histogram" in request_lower):
|
| 620 |
+
num_col = numeric_cols[0]
|
| 621 |
+
return f"""import pandas as pd
|
| 622 |
+
import matplotlib.pyplot as plt
|
| 623 |
+
import seaborn as sns
|
| 624 |
+
df = pd.read_excel('data.xlsx')
|
| 625 |
+
plt.figure(figsize=(10, 6))
|
| 626 |
+
sns.histplot(df['{num_col}'], kde=True, bins=20, color='purple')
|
| 627 |
+
plt.title('Distribution of {num_col}', fontsize=15)
|
| 628 |
+
plt.xlabel('{num_col}', fontsize=12)
|
| 629 |
+
plt.ylabel('Frequency', fontsize=12)
|
| 630 |
+
plt.grid(True, alpha=0.3)
|
| 631 |
+
plt.tight_layout()
|
| 632 |
+
plt.savefig('distribution_plot.png')
|
| 633 |
+
plt.show()
|
| 634 |
+
print(df['{num_col}'].describe())"""
|
| 635 |
+
|
| 636 |
+
else:
|
| 637 |
+
return f"""import pandas as pd
|
| 638 |
+
import matplotlib.pyplot as plt
|
| 639 |
+
import seaborn as sns
|
| 640 |
+
import numpy as np
|
| 641 |
+
df = pd.read_excel('data.xlsx')
|
| 642 |
+
print("Descriptive statistics:")
|
| 643 |
+
print(df.describe())
|
| 644 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
| 645 |
+
numeric_df = df.select_dtypes(include=[np.number])
|
| 646 |
+
if not numeric_df.empty and numeric_df.shape[1] > 1:
|
| 647 |
+
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[0, 0])
|
| 648 |
+
axes[0, 0].set_title('Correlation Matrix')
|
| 649 |
+
if not numeric_df.empty:
|
| 650 |
+
for i, col in enumerate(numeric_df.columns[:1]):
|
| 651 |
+
sns.histplot(df[col], kde=True, ax=axes[0, 1], color='purple')
|
| 652 |
+
axes[0, 1].set_title(f'Distribution of {{col}}')
|
| 653 |
+
axes[0, 1].set_xlabel(col)
|
| 654 |
+
axes[0, 1].set_ylabel('Frequency')
|
| 655 |
+
categorical_cols = df.select_dtypes(include=['object']).columns
|
| 656 |
+
if len(categorical_cols) > 0 and not numeric_df.empty:
|
| 657 |
+
cat_col = categorical_cols[0]
|
| 658 |
+
num_col = numeric_df.columns[0]
|
| 659 |
+
sns.barplot(x=cat_col, y=num_col, data=df, ax=axes[1, 0], palette='viridis')
|
| 660 |
+
axes[1, 0].set_title(f'{{num_col}} by {{cat_col}}')
|
| 661 |
+
axes[1, 0].set_xticklabels(axes[1, 0].get_xticklabels(), rotation=45, ha='right')
|
| 662 |
+
if not numeric_df.empty and len(categorical_cols) > 0:
|
| 663 |
+
cat_col = categorical_cols[0]
|
| 664 |
+
num_col = numeric_df.columns[0]
|
| 665 |
+
sns.boxplot(x=cat_col, y=num_col, data=df, ax=axes[1, 1], palette='Set3')
|
| 666 |
+
axes[1, 1].set_title(f'Distribution of {{num_col}} by {{cat_col}}')
|
| 667 |
+
axes[1, 1].set_xticklabels(axes[1, 1].get_xticklabels(), rotation=45, ha='right')
|
| 668 |
+
plt.tight_layout()
|
| 669 |
+
plt.savefig('dashboard.png')
|
| 670 |
+
plt.show()"""
|
| 671 |
+
|
| 672 |
+
@app.get("/", include_in_schema=False)
|
| 673 |
+
async def home():
|
| 674 |
+
"""Redirect to the static index.html file"""
|
| 675 |
+
return RedirectResponse(url="/static/index.html")
|
| 676 |
+
|
| 677 |
+
@app.get("/health", include_in_schema=True)
|
| 678 |
+
async def health_check():
|
| 679 |
+
"""Health check endpoint"""
|
| 680 |
+
return {"status": "healthy", "version": "2.0.0"}
|
| 681 |
+
|
| 682 |
+
@app.get("/models", include_in_schema=True)
|
| 683 |
+
async def list_models():
|
| 684 |
+
"""List available models"""
|
| 685 |
+
return {"models": MODELS}
|
| 686 |
+
|
| 687 |
+
@app.on_event("startup")
|
| 688 |
+
async def startup_event():
|
| 689 |
+
"""Pre-load models at startup with timeout"""
|
| 690 |
+
global translation_model, translation_tokenizer
|
| 691 |
+
logger.info("Starting model pre-loading...")
|
| 692 |
+
|
| 693 |
+
async def load_model_with_timeout(task):
|
| 694 |
+
try:
|
| 695 |
+
await asyncio.wait_for(asyncio.to_thread(load_model, task), timeout=60.0)
|
| 696 |
+
logger.info(f"Successfully loaded {task} model")
|
| 697 |
+
except asyncio.TimeoutError:
|
| 698 |
+
logger.warning(f"Timeout loading {task} model - will load on demand")
|
| 699 |
+
except Exception as e:
|
| 700 |
+
logger.error(f"Error pre-loading {task}: {str(e)}")
|
| 701 |
+
|
| 702 |
+
try:
|
| 703 |
+
model_name = MODELS["translation"]
|
| 704 |
+
translation_model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
| 705 |
+
translation_tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
| 706 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 707 |
+
translation_model.to(device)
|
| 708 |
+
logger.info("Translation model pre-loaded successfully")
|
| 709 |
except Exception as e:
|
| 710 |
+
logger.error(f"Error pre-loading translation model: {str(e)}")
|
| 711 |
+
|
| 712 |
+
await asyncio.gather(
|
| 713 |
+
load_model_with_timeout("summarization"),
|
| 714 |
+
load_model_with_timeout("image-to-text"),
|
| 715 |
+
load_model_with_timeout("visual-qa"),
|
| 716 |
+
load_model_with_timeout("chatbot"),
|
| 717 |
+
load_model_with_timeout("file-qa") # Pre-load file QA model
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
if __name__ == "__main__":
|
| 721 |
+
import uvicorn
|
| 722 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|