from shiny import render from shiny.express import input, ui from datasets import load_dataset import pandas as pd from pathlib import Path import matplotlib import numpy as np import gradio as gr from shiny.express import input, output, render, ui ############################################################# 2D Line Plot ######################################################## ### dvq stuff, obvs this will just be an import in the final version from typing import Dict, Optional from collections import namedtuple import numpy as np import matplotlib.pyplot as plt import matplotlib.style as mplstyle from pathlib import Path from shiny import render from shiny.express import input, ui import pandas as pd from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import interp1d import numpy as np # Mapping of nucleotides to float coordinates mapping_easy = { 'A': np.array([0.5, -0.8660254037844386]), 'T': np.array([0.5, 0.8660254037844386]), 'G': np.array([0.8660254037844386, -0.5]), 'C': np.array([0.8660254037844386, 0.5]), 'N': np.array([0, 0]) } # coordinates for x+iy Coord = namedtuple("Coord", ["x","y"]) # coordinates for a CGR encoding CGRCoords = namedtuple("CGRCoords", ["N","x","y"]) # coordinates for each nucleotide in the 2d-plane DEFAULT_COORDS = dict(A=Coord(1,1),C=Coord(-1,1),G=Coord(-1,-1),T=Coord(1,-1)) # Function to convert a DNA sequence to a list of coordinates def _dna_to_coordinates(dna_sequence, mapping): dna_sequence = dna_sequence.upper() coordinates = np.array([mapping.get(nucleotide, mapping['N']) for nucleotide in dna_sequence]) return coordinates # Function to create the cumulative sum of a list of coordinates def _get_cumulative_coords(mapped_coords): cumulative_coords = np.cumsum(mapped_coords, axis=0) return cumulative_coords # Function to take a list of DNA sequences and plot them in a single figure def plot_2d_sequences(dna_sequences, mapping=mapping_easy, single_sequence=False): fig, ax = plt.subplots() if single_sequence: dna_sequences = [dna_sequences] for dna_sequence in dna_sequences: mapped_coords = _dna_to_coordinates(dna_sequence, mapping) cumulative_coords = _get_cumulative_coords(mapped_coords) ax.plot(*cumulative_coords.T) return fig # Function to plot a comparison of DNA sequences def plot_2d_comparison(dna_sequences_grouped, labels, mapping=mapping_easy): fig, ax = plt.subplots() colors = plt.cm.rainbow(np.linspace(0, 1, len(dna_sequences_grouped))) for count, (dna_sequences, color) in enumerate(zip(dna_sequences_grouped, colors)): for dna_sequence in dna_sequences: mapped_coords = _dna_to_coordinates(dna_sequence, mapping) cumulative_coords = _get_cumulative_coords(mapped_coords) ax.plot(*cumulative_coords.T, color=color, label=labels[count]) # Only show unique labels in the legend handles, labels = ax.get_legend_handles_labels() by_label = dict(zip(labels, handles)) ax.legend(by_label.values(), by_label.keys()) return fig ############################################################# Virus Dataset ######################################################## #ds = load_dataset('Hack90/virus_tiny') df = pd.read_parquet('virus_ds.parquet') virus = df['Organism_Name'].unique() virus = {v: v for v in virus} ############################################################# Filter and Select ######################################################## def filter_and_select(group): if len(group) >= 3: return group.head(3) ############################################################# Wens Method ######################################################## import numpy as np WEIGHTS = {'0100': 1/6, '0101': 2/6, '1100' : 3/6, '0110':3/6, '1101': 4/6, '1110': 5/6,'0111':5/6, '1111': 6/6} LOWEST_LENGTH = 5000 def _get_subsequences(sequence): return {nuc: [i+1 for i, x in enumerate(sequence) if x == nuc] for nuc in 'ACTG'} def _calculate_coordinates_fixed(subsequence, L=LOWEST_LENGTH): return [((2 * np.pi / (L - 1)) * (K-1), np.sqrt((2 * np.pi / (L - 1)) * (K-1))) for K in subsequence] def _calculate_weighting_full(sequence, WEIGHTS, L=LOWEST_LENGTH, E=0.0375): weightings = [0] for i in range(1, len(sequence) - 1): if i < len(sequence) - 2: subsequence = sequence[i-1:i+3] comparison_pattern = f"{'1' if subsequence[0] == subsequence[1] else '0'}1{'1' if subsequence[2] == subsequence[1] else '0'}{'1' if subsequence[3] == subsequence[1] else '0'}" weight = WEIGHTS.get(comparison_pattern, 0) weight = weight * E if i > L else weight else: weight = 0 weightings.append(weight) weightings.append(0) return weightings def _centre_of_mass(polar_coordinates, weightings): x, y = _calculate_standard_coordinates(polar_coordinates) return sum(weightings[i] * ((x[i] - (x[i]*weightings[i]))**2 + (y[i] - y[i]*weightings[i])**2) for i in range(len(x))) def _normalised_moment_of_inertia(polar_coordinates, weightings): moment = _centre_of_mass(polar_coordinates, weightings) return np.sqrt(moment / sum(weightings)) def _calculate_standard_coordinates(polar_coordinates): return [rho * np.cos(theta) for theta, rho in polar_coordinates], [rho * np.sin(theta) for theta, rho in polar_coordinates] def _moments_of_inertia(polar_coordinates, weightings): return [_normalised_moment_of_inertia(indices, weightings) for subsequence, indices in polar_coordinates.items()] def moment_of_inertia(sequence, WEIGHTS, L=5000, E=0.0375): subsequences = _get_subsequences(sequence) polar_coordinates = {subsequence: _calculate_coordinates_fixed(indices, len(sequence)) for subsequence, indices in subsequences.items()} weightings = _calculate_weighting_full(sequence, WEIGHTS, L=L, E=E) return _moments_of_inertia(polar_coordinates, weightings) def similarity_wen(sequence1, sequence2, WEIGHTS, L=5000, E=0.0375): L = min(len(sequence1), len(sequence2)) inertia1 = moment_of_inertia(sequence1, WEIGHTS, L=L, E=E) inertia2 = moment_of_inertia(sequence2, WEIGHTS, L=L, E=E) similarity = np.sqrt(sum((x - y)**2 for x, y in zip(inertia1, inertia2))) return similarity def heatmap(data, row_labels, col_labels, ax=None, cbar_kw=None, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Parameters ---------- data A 2D numpy array of shape (M, N). row_labels A list or array of length M with the labels for the rows. col_labels A list or array of length N with the labels for the columns. ax A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If not provided, use current axes or create a new one. Optional. cbar_kw A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. cbarlabel The label for the colorbar. Optional. **kwargs All other arguments are forwarded to `imshow`. """ if ax is None: ax = plt.gca() if cbar_kw is None: cbar_kw = {} # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # Show all ticks and label them with the respective list entries. ax.set_xticks(np.arange(data.shape[1]), labels=col_labels) ax.set_yticks(np.arange(data.shape[0]), labels=row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") # Turn spines off and create white grid. ax.spines[:].set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def annotate_heatmap(im, data=None, valfmt="{x:.2f}", textcolors=("black", "white"), threshold=None, **textkw): """ A function to annotate a heatmap. Parameters ---------- im The AxesImage to be labeled. data Data used to annotate. If None, the image's data is used. Optional. valfmt The format of the annotations inside the heatmap. This should either use the string format method, e.g. "$ {x:.2f}", or be a `matplotlib.ticker.Formatter`. Optional. textcolors A pair of colors. The first is used for values below a threshold, the second for those above. Optional. threshold Value in data units according to which the colors from textcolors are applied. If None (the default) uses the middle of the colormap as separation. Optional. **kwargs All other arguments are forwarded to each call to `text` used to create the text labels. """ if not isinstance(data, (list, np.ndarray)): data = im.get_array() # Normalize the threshold to the images color range. if threshold is not None: threshold = im.norm(threshold) else: threshold = im.norm(data.max())/2. # Set default alignment to center, but allow it to be # overwritten by textkw. kw = dict(horizontalalignment="center", verticalalignment="center") kw.update(textkw) # Get the formatter in case a string is supplied if isinstance(valfmt, str): valfmt = matplotlib.ticker.StrMethodFormatter(valfmt) # Loop over the data and create a `Text` for each "pixel". # Change the text's color depending on the data. texts = [] for i in range(data.shape[0]): for j in range(data.shape[1]): kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)]) text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) texts.append(text) return texts def wens_method_heatmap(df, virus_species): # Create a dataframe to store the similarity values similarity_df = pd.DataFrame(index=virus_species, columns=virus_species) # Fill the dataframe with similarity values for virus1 in virus_species: for virus2 in virus_species: if virus1 == virus2: sequence1 = df[df['Organism_Name'] == virus1]['Sequence'].values[0] sequence2 = df[df['Organism_Name'] == virus2]['Sequence'].values[1] similarity = similarity_wen(sequence1, sequence2, WEIGHTS) similarity_df.loc[virus1, virus2] = similarity else: sequence1 = df[df['Organism_Name'] == virus1]['Sequence'].values[0] sequence2 = df[df['Organism_Name'] == virus2]['Sequence'].values[0] similarity = similarity_wen(sequence1, sequence2, WEIGHTS) similarity_df.loc[virus1, virus2] = similarity similarity_df = similarity_df.apply(pd.to_numeric) # Optional: Handle NaN values if your similarity computation might result in them # similarity_df.fillna(0, inplace=True) fig, ax = plt.subplots() # Plotting im = ax.imshow(similarity_df, cmap="YlGn") ax.set_xticks(np.arange(len(virus_species)), labels=virus_species) ax.set_yticks(np.arange(len(virus_species)), labels=virus_species) plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") cbar = ax.figure.colorbar(im, ax=ax) cbar.ax.set_ylabel("Similarity", rotation=-90, va="bottom") return fig ############################################################# ColorSquare ######################################################## import math import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import pandas as pd def _fill_spiral(matrix, seq_colors, k): left, top, right, bottom = 0, 0, k-1, k-1 index = 0 while left <= right and top <= bottom: for i in range(left, right + 1): # Top row if index < len(seq_colors): matrix[top][i] = seq_colors[index] index += 1 top += 1 for i in range(top, bottom + 1): # Right column if index < len(seq_colors): matrix[i][right] = seq_colors[index] index += 1 right -= 1 for i in range(right, left - 1, -1): # Bottom row if index < len(seq_colors): matrix[bottom][i] = seq_colors[index] index += 1 bottom -= 1 for i in range(bottom, top - 1, -1): # Left column if index < len(seq_colors): matrix[i][left] = seq_colors[index] index += 1 left += 1 def _generate_color_square(sequence,virus, save=False, count=0, label=None): # Define the sequence and corresponding colors with indices colors = {'a': 0, 't': 1, 'c': 2, 'g': 3, 'n': 4} # Assign indices to each color seq_colors = [colors[char] for char in sequence.lower()] # Map the sequence to color indices # Calculate k (size of the square) k = math.ceil(math.sqrt(len(sequence))) # Initialize a k x k matrix filled with the index for 'white' matrix = np.full((k, k), colors['n'], dtype=int) # Fill the matrix in a clockwise spiral _fill_spiral(matrix, seq_colors, k) # Define a custom color map for plotting cmap = ListedColormap(['red', 'green', 'yellow', 'blue', 'white']) # Plot the matrix plt.figure(figsize=(5, 5)) plt.imshow(matrix, cmap=cmap, interpolation='nearest') if label: plt.title(label) plt.axis('off') # Hide the axes if save: plt.savefig(f'color_square_{virus}_{count}.png', dpi=300, bbox_inches='tight') # plt.show() def plot_color_square(df, virus_species): ncols = 3 nrows = len(virus_species) fig, axeses = plt.subplots( nrows=nrows, ncols=ncols, squeeze=False, ) for i in range(0, ncols * nrows): row = i // ncols col = i % ncols axes = axeses[row, col] data = df[i] virus = virus_species[row] # Define the sequence and corresponding colors with indices colors = {'a': 0, 't': 1, 'c': 2, 'g': 3, 'n': 4} # remove all non-nucleotide characters data = ''.join([char for char in data.lower() if char in 'atcgn']) # Assign indices to each color seq_colors = [colors[char] for char in data.lower()] # Map the sequence to color indices # Calculate k (size of the square) k = math.ceil(math.sqrt(len(data))) # Initialize a k x k matrix filled with the index for 'white' matrix = np.full((k, k), colors['n'], dtype=int) # Fill the matrix in a clockwise spiral _fill_spiral(matrix, seq_colors, k) # Define a custom color map for plotting cmap = ListedColormap(['red', 'green', 'yellow', 'blue', 'white']) axes.imshow(matrix, cmap=cmap, interpolation='nearest') axes.set_title(virus) return fig def generate_color_square(sequence,virus, multi=False, save=False, label=None): if multi: for i,seq in enumerate(sequence): _generate_color_square(seq, virus,save, i, label[i] if label else None) else: _generate_color_square(sequence, save, label=label) ############################################################# FCGR ######################################################## from typing import Dict, Optional from collections import namedtuple # coordinates for x+iy Coord = namedtuple("Coord", ["x","y"]) # coordinates for a CGR encoding CGRCoords = namedtuple("CGRCoords", ["N","x","y"]) # coordinates for each nucleotide in the 2d-plane DEFAULT_COORDS = dict(A=Coord(1,1),C=Coord(-1,1),G=Coord(-1,-1),T=Coord(1,-1)) class CGR: "Chaos Game Representation for DNA" def __init__(self, coords: Optional[Dict[chr,tuple]]=None): self.nucleotide_coords = DEFAULT_COORDS if coords is None else coords self.cgr_coords = CGRCoords(0,0,0) def nucleotide_by_coords(self,x,y): "Get nucleotide by coordinates (x,y)" # filter nucleotide by coordinates filtered = dict(filter(lambda item: item[1] == Coord(x,y), self.nucleotide_coords.items())) return list(filtered.keys())[0] def forward(self, nucleotide: str): "Compute next CGR coordinates" x = (self.cgr_coords.x + self.nucleotide_coords.get(nucleotide).x)/2 y = (self.cgr_coords.y + self.nucleotide_coords.get(nucleotide).y)/2 # update cgr_coords self.cgr_coords = CGRCoords(self.cgr_coords.N+1,x,y) def backward(self,): "Compute last CGR coordinates. Current nucleotide can be inferred from (x,y)" # get current nucleotide based on coordinates n_x,n_y = self.coords_current_nucleotide() nucleotide = self.nucleotide_by_coords(n_x,n_y) # update coordinates to the previous one x = 2*self.cgr_coords.x - n_x y = 2*self.cgr_coords.y - n_y # update cgr_coords self.cgr_coords = CGRCoords(self.cgr_coords.N-1,x,y) return nucleotide def coords_current_nucleotide(self,): x = 1 if self.cgr_coords.x>0 else -1 y = 1 if self.cgr_coords.y>0 else -1 return x,y def encode(self, sequence: str): "From DNA sequence to CGR" # reset starting position to (0,0,0) self.reset_coords() for nucleotide in sequence: self.forward(nucleotide) return self.cgr_coords def reset_coords(self,): self.cgr_coords = CGRCoords(0,0,0) def decode(self, N:int, x:int, y:int)->str: "From CGR to DNA sequence" self.cgr_coords = CGRCoords(N,x,y) # decoded sequence sequence = [] # Recover the entire genome while self.cgr_coords.N>0: nucleotide = self.backward() sequence.append(nucleotide) return "".join(sequence[::-1]) from itertools import product from collections import defaultdict import numpy as np class FCGR(CGR): """Frequency matrix CGR an (2**k x 2**k) 2D representation will be created for a n-long sequence. - k represents the k-mer. - 2**k x 2**k = 4**k the total number of k-mers (sequences of length k) - pixel value correspond to the value of the frequency for each k-mer """ def __init__(self, k: int,): super().__init__() self.k = k # k-mer representation self.kmers = list("".join(kmer) for kmer in product("ACGT", repeat=self.k)) self.kmer2pixel = self.kmer2pixel_position() def __call__(self, sequence: str): "Given a DNA sequence, returns an array with his frequencies in the same order as FCGR" self.count_kmers(sequence) # Create an empty array to save the FCGR values array_size = int(2**self.k) freq_matrix = np.zeros((array_size,array_size)) # Assign frequency to each box in the matrix for kmer, freq in self.freq_kmer.items(): pos_x, pos_y = self.kmer2pixel[kmer] freq_matrix[int(pos_x)-1,int(pos_y)-1] = freq return freq_matrix def count_kmer(self, kmer): if "N" not in kmer: self.freq_kmer[kmer] += 1 def count_kmers(self, sequence: str): self.freq_kmer = defaultdict(int) # representativity of kmers last_j = len(sequence) - self.k + 1 kmers = (sequence[i:(i+self.k)] for i in range(last_j)) # count kmers in a dictionary list(self.count_kmer(kmer) for kmer in kmers) def kmer_probabilities(self, sequence: str): self.probabilities = defaultdict(float) N=len(sequence) for key, value in self.freq_kmer.items(): self.probabilities[key] = float(value) / (N - self.k + 1) def pixel_position(self, kmer: str): "Get pixel position in the FCGR matrix for a k-mer" coords = self.encode(kmer) N,x,y = coords.N, coords.x, coords.y # Coordinates from [-1,1]² to [1,2**k]² np_coords = np.array([(x + 1)/2, (y + 1)/2]) # move coordinates from [-1,1]² to [0,1]² np_coords *= 2**self.k # rescale coordinates from [0,1]² to [0,2**k]² x,y = np.ceil(np_coords) # round to upper integer # Turn coordinates (cx,cy) into pixel (px,py) position # px = 2**k-cy+1, py = cx return 2**self.k-int(y)+1, int(x) def kmer2pixel_position(self,): kmer2pixel = dict() for kmer in self.kmers: kmer2pixel[kmer] = self.pixel_position(kmer) return kmer2pixel from tqdm import tqdm from pathlib import Path import numpy as np class GenerateFCGR: def __init__(self, kmer: int = 5, ): self.kmer = kmer self.fcgr = FCGR(kmer) self.counter = 0 # count number of time a sequence is converted to fcgr def __call__(self, list_fasta,): for fasta in tqdm(list_fasta, desc="Generating FCGR"): self.from_fasta(fasta) def from_seq(self, seq: str): "Get FCGR from a sequence" seq = self.preprocessing(seq) chaos = self.fcgr(seq) self.counter +=1 return chaos def reset_counter(self,): self.counter=0 @staticmethod def preprocessing(seq): seq = seq.upper() for letter in seq: if letter not in "ATCG": seq = seq.replace(letter,"N") return seq def plot_fcgr(df, virus_species): ncols = 3 nrows = len(virus_species) fig, axeses = plt.subplots( nrows=nrows, ncols=ncols, squeeze=False, ) for i in range(0, ncols * nrows): row = i // ncols col = i % ncols axes = axeses[row, col] data = df[i].upper() chaos = GenerateFCGR().from_seq(seq=data) virus = virus_species[row] axes.imshow(chaos) axes.set_title(virus) return fig ############################################################# Persistant Homology ######################################################## import numpy as np import persim import ripser import matplotlib.pyplot as plt NUCLEOTIDE_MAPPING = { 'a': np.array([1, 0, 0, 0]), 'c': np.array([0, 1, 0, 0]), 'g': np.array([0, 0, 1, 0]), 't': np.array([0, 0, 0, 1]) } def encode_nucleotide_to_vector(nucleotide): return NUCLEOTIDE_MAPPING.get(nucleotide) def chaos_4d_representation(dna_sequence): points = [encode_nucleotide_to_vector(dna_sequence[0])] for nucleotide in dna_sequence[1:]: vector = encode_nucleotide_to_vector(nucleotide) if vector is None: continue next_point = 0.5 * (points[-1] + vector) points.append(next_point) return np.array(points) def persistence_homology(dna_sequence, multi=False, plot=False, sample_rate=7): if multi: c4dr_points = np.array([chaos_4d_representation(sequence) for sequence in dna_sequence]) dgm_dna = [ripser.ripser(points[::sample_rate], maxdim=1)['dgms'] for points in c4dr_points] if plot: persim.plot_diagrams([dgm[1] for dgm in dgm_dna], labels=[f'sequence {i}' for i in range(len(dna_sequence))]) else: c4dr_points = chaos_4d_representation(dna_sequence) dgm_dna = ripser.ripser(c4dr_points[::sample_rate], maxdim=1)['dgms'] if plot: persim.plot_diagrams(dgm_dna[1]) return dgm_dna def plot_diagrams( diagrams, plot_only=None, title=None, xy_range=None, labels=None, colormap="default", size=20, ax_color=np.array([0.0, 0.0, 0.0]), diagonal=True, lifetime=False, legend=True, show=False, ax=None ): """A helper function to plot persistence diagrams. Parameters ---------- diagrams: ndarray (n_pairs, 2) or list of diagrams A diagram or list of diagrams. If diagram is a list of diagrams, then plot all on the same plot using different colors. plot_only: list of numeric If specified, an array of only the diagrams that should be plotted. title: string, default is None If title is defined, add it as title of the plot. xy_range: list of numeric [xmin, xmax, ymin, ymax] User provided range of axes. This is useful for comparing multiple persistence diagrams. labels: string or list of strings Legend labels for each diagram. If none are specified, we use H_0, H_1, H_2,... by default. colormap: string, default is 'default' Any of matplotlib color palettes. Some options are 'default', 'seaborn', 'sequential'. See all available styles with .. code:: python import matplotlib as mpl print(mpl.styles.available) size: numeric, default is 20 Pixel size of each point plotted. ax_color: any valid matplotlib color type. See [https://matplotlib.org/api/colors_api.html](https://matplotlib.org/api/colors_api.html) for complete API. diagonal: bool, default is True Plot the diagonal x=y line. lifetime: bool, default is False. If True, diagonal is turned to False. Plot life time of each point instead of birth and death. Essentially, visualize (x, y-x). legend: bool, default is True If true, show the legend. show: bool, default is False Call plt.show() after plotting. If you are using self.plot() as part of a subplot, set show=False and call plt.show() only once at the end. """ fig, ax = plt.subplots() if ax is None else ax plt.style.use(colormap) xlabel, ylabel = "Birth", "Death" if not isinstance(diagrams, list): # Must have diagrams as a list for processing downstream diagrams = [diagrams] if labels is None: # Provide default labels for diagrams if using self.dgm_ labels = ["$H_{{{}}}$".format(i) for i , _ in enumerate(diagrams)] if plot_only: diagrams = [diagrams[i] for i in plot_only] labels = [labels[i] for i in plot_only] if not isinstance(labels, list): labels = [labels] * len(diagrams) # Construct copy with proper type of each diagram # so we can freely edit them. diagrams = [dgm.astype(np.float32, copy=True) for dgm in diagrams] # find min and max of all visible diagrams concat_dgms = np.concatenate(diagrams).flatten() has_inf = np.any(np.isinf(concat_dgms)) finite_dgms = concat_dgms[np.isfinite(concat_dgms)] # clever bounding boxes of the diagram if not xy_range: # define bounds of diagram ax_min, ax_max = np.min(finite_dgms), np.max(finite_dgms) x_r = ax_max - ax_min # Give plot a nice buffer on all sides. # ax_range=0 when only one point, buffer = 1 if xy_range == 0 else x_r / 5 x_down = ax_min - buffer / 2 x_up = ax_max + buffer y_down, y_up = x_down, x_up else: x_down, x_up, y_down, y_up = xy_range yr = y_up - y_down if lifetime: # Don't plot landscape and diagonal at the same time. diagonal = False # reset y axis so it doesn't go much below zero y_down = -yr * 0.05 y_up = y_down + yr # set custom ylabel ylabel = "Lifetime" # set diagrams to be (x, y-x) for dgm in diagrams: dgm[:, 1] -= dgm[:, 0] # plot horizon line ax.plot([x_down, x_up], [0, 0], c=ax_color) # Plot diagonal if diagonal: ax.plot([x_down, x_up], [x_down, x_up], "--", c=ax_color) # Plot inf line if has_inf: # put inf line slightly below top b_inf = y_down + yr * 0.95 ax.plot([x_down, x_up], [b_inf, b_inf], "--", c="k", label=r"$\infty$") # convert each inf in each diagram with b_inf for dgm in diagrams: dgm[np.isinf(dgm)] = b_inf # Plot each diagram for dgm, label in zip(diagrams, labels): # plot persistence pairs ax.scatter(dgm[:, 0], dgm[:, 1], size, label=label, edgecolor="none") ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim([x_down, x_up]) ax.set_ylim([y_down, y_up]) ax.set_aspect('equal', 'box') if title is not None: ax.set_title(title) if legend is True: ax.legend(loc="lower right") if show is True: plt.show() return fig, ax def plot_persistence_homology(df, virus_species): # if len(virus_species.unique()) > 1: c4dr_points = [chaos_4d_representation(sequence.lower()) for sequence in df] dgm_dna = [ripser.ripser(points[::15], maxdim=1)['dgms'] for points in c4dr_points] labels =[f'{virus_specie}_{i}' for i, virus_specie in enumerate(virus_species)] fig, ax = plot_diagrams([dgm[1] for dgm in dgm_dna], labels=labels) # else: # c4dr_points = [chaos_4d_representation(sequence.lower()) for sequence in df] # dgm_dna = [ripser.ripser(points[::10], maxdim=1)['dgms'] for points in c4dr_points] # labels =[f'{virus_specie}_{i}' for i, virus_specie in enumerate(virus_species)] # print(labels) # print(len(dgm_dna)) # fig, ax = plot_diagrams([dgm[1] for dgm in dgm_dna], labels=labels) return fig def compare_persistence_homology(dna_sequence1, dna_sequence2): dgm_dna1 = persistence_homology(dna_sequence1) dgm_dna2 = persistence_homology(dna_sequence2) distance = persim.sliced_wasserstein(dgm_dna1[1], dgm_dna2[1]) return distance ############################################################# UI ################################################################# ui.page_opts(fillable=True) with ui.navset_card_tab(id="tab"): with ui.nav_panel("Viral Macrostructure"): ui.page_opts(fillable=True) ui.panel_title("Do viruses have underlying structure?") with ui.layout_columns(): with ui.card(): ui.input_selectize( "virus_selector", "Select your viruses:", virus, multiple=True, selected=None ) with ui.card(): ui.input_selectize( "plot_type_macro", "Select your method:", ["Chaos Game Representation", "2D Line", "ColorSquare", "Persistant Homology", "Wens Method"], multiple=False, selected=None ) ############################################################# Plotting ######################################################## here = Path(__file__).parent import matplotlib as mpl # @output(suspend_when_hidden=True) @render.plot() def plot_macro(): #ds = load_dataset('Hack90/virus_tiny') df = pd.read_parquet('virus_ds.parquet') df = df[df['Organism_Name'].isin(input.virus_selector())] # group by virus grouped = df.groupby('Organism_Name')['Sequence'].apply(list) mpl.rcParams.update(mpl.rcParamsDefault) # plot the comparison fig = None if input.plot_type_macro() == "2D Line": fig = plot_2d_comparison(grouped, grouped.index) if input.plot_type_macro() == "ColorSquare": filtered_df = df.groupby('Organism_Name').apply(filter_and_select).reset_index(drop=True) fig = plot_color_square(filtered_df['Sequence'], filtered_df['Organism_Name'].unique()) if input.plot_type_macro() == "Wens Method": fig = wens_method_heatmap(df, df['Organism_Name'].unique()) if input.plot_type_macro() == "Chaos Game Representation": filtered_df = df.groupby('Organism_Name').apply(filter_and_select).reset_index(drop=True) fig = plot_fcgr(filtered_df['Sequence'], df['Organism_Name'].unique()) if input.plot_type_macro() == "Persistant Homology": filtered_df = df.groupby('Organism_Name').apply(filter_and_select).reset_index(drop=True) fig = plot_persistence_homology(filtered_df['Sequence'], filtered_df['Organism_Name']) return fig # ui.output_plot("plot_macro_output") # with ui.nav_panel("Viral Model"): # gr.load("models/Hack90/virus_pythia_31_1024").launch() with ui.nav_panel("Viral Microstructure"): ui.page_opts(fillable=True) ui.panel_title("Kmer Distribution") with ui.layout_columns(): with ui.card(): ui.input_slider("kmer", "kmer", 0, 10, 4) ui.input_slider("top_k", "top:", 0, 1000, 15) ui.input_selectize( "plot_type", "Select metric:", ["percentage", "count"], multiple=False, selected=None ) import matplotlib as mpl # @output(suspend_when_hidden=True) @render.plot() def plot_micro(): df = pd.read_csv('kmers.csv') k = input.kmer() top_k = input.top_k() fig = None mpl.rcParams.update(mpl.rcParamsDefault) if input.plot_type() == "count" and input.kmer() > 0: df = df[df['k'] == k] df = df.head(top_k) fig, ax = plt.subplots() ax.bar(df['kmer'], df['count']) ax.set_title(f"Most common {k}-mers") ax.set_xlabel("K-mer") ax.set_ylabel("Count") ax.set_xticklabels(df['kmer'], rotation=90) if input.plot_type() == "percentage" and input.kmer() > 0: df = df[df['k'] == k] df = df.head(top_k) fig, ax = plt.subplots() ax.bar(df['kmer'], df['percent']*100) ax.set_title(f"Most common {k}-mers") ax.set_xlabel("K-mer") ax.set_ylabel("Percentage") ax.set_xticklabels(df['kmer'], rotation=90) return fig #ui.output_plot("plot_micro_output") with ui.nav_panel("Viral Model Training"): ui.page_opts(fillable=True) ui.panel_title("Does context size matter for a nucleotide model?") def plot_loss_rates(df, type): # interplot each column to be same number of points x = np.linspace(0, 1, 1000) loss_rates = [] labels = ['32', '64', '128', '256', '512', '1024'] #drop the column step df = df.drop(columns=['Step']) for col in df.columns: y = df[col].dropna().astype('float', errors = 'ignore').dropna().values f = interp1d(np.linspace(0, 1, len(y)), y) loss_rates.append(f(x)) fig, ax = plt.subplots() for i, loss_rate in enumerate(loss_rates): ax.plot(x, loss_rate, label=labels[i]) ax.legend() ax.set_title(f'Loss rates for a {type} parameter model across context windows') ax.set_xlabel('Training steps') ax.set_ylabel('Loss rate') return fig import matplotlib as mpl @render.plot() def plot_context_size_scaling(): fig = None df = pd.read_csv('14m.csv') mpl.rcParams.update(mpl.rcParamsDefault) fig = plot_loss_rates(df, '14M') return fig with ui.nav_panel("Model loss analysis"): ui.page_opts(fillable=True) ui.panel_title("Neurips stuff") with ui.card(): ui.input_selectize( "param_type", "Select Param Type:", ["14", "31", "70", "160", "410"], multiple=True, selected=["14", "70"] ) ui.input_selectize( "model_type", "Select Model Type:", ["pythia", "denseformer", "evo"], multiple=True, selected=['pythia','denseformer'] ) ui.input_selectize( "loss_type", "Select Loss Type:", ["compliment", "cross_entropy", "headless", "2d", "2d_representation_MSEPlusCE"], multiple=True, selected=["compliment", "cross_entropy", "headless"] ) def plot_loss_rates_model(df, param_types, loss_types, model_types): # interplot each column to be same number of points x = np.linspace(0, 1, 1000) loss_rates = [] labels = [] print(param_types, loss_types, model_types) for param_type in param_types: for loss_type in loss_types: for model_type in model_types: y = df[(df['param_type'] == int(param_type)) & (df['loss_type'] == loss_type) & (df['model_type'] == model_type)]['loss_interp'].values print(y) if len(y) > 0: f = interp1d(np.linspace(0, 1, len(y)), y) loss_rates.append(f(x)) labels.append(str(param_type) + '_' + loss_type + '_' + model_type) fig, ax = plt.subplots() print(loss_rates) for i, loss_rate in enumerate(loss_rates): ax.plot(x, loss_rate, label=labels[i]) ax.legend() ax.set_xlabel('Training steps') ax.set_ylabel('Loss rate') return fig import matplotlib as mpl @render.plot() def plot_model_scaling(): fig = None df = pd.read_csv('training_data_5.csv') mpl.rcParams.update(mpl.rcParamsDefault) fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type()) return fig with ui.nav_panel("Scaling Laws"): ui.page_opts(fillable=True) ui.panel_title("Params & Losses") with ui.card(): ui.input_selectize( "model_type_scale", "Select Model Type:", ["pythia", "denseformer", "evo"], multiple=True, selected=['evo','denseformer'] ) ui.input_selectize( "loss_type_scale", "Select Loss Type:", ["compliment", "cross_entropy", "headless", "2d", "2d_representation_MSEPlusCE"], multiple=True, selected=["cross_entropy"] ) def plot_loss_rates_model_scale(df, loss_type, model_types): df = df[df['loss_type'] == loss_type[0]] # interplot each column to be same number of points params = [] loss_rates = [] labels = [] for model_type in model_types: df_new = df[df['model_type']==model_type] losses = [] params_model = [] # print(df_new) for paramy in df_new['num_params'].unique(): loss = df_new[df_new['num_params']==paramy]['loss_interp'].min() print(loss) par = int(paramy) print(par) losses.append(loss) params_model.append(par) df_reorder = pd.DataFrame({'loss':losses, 'params':params_model}) df_reorder = df_reorder.sort_values(by='params') print(df_reorder) loss_rates.append(df_reorder['loss'].to_list()) params.append(df_reorder['params'].to_list()) labels.append(model_type) fig, ax = plt.subplots() for i, loss_rate in enumerate(loss_rates): ax.plot(params[i], loss_rate, label=labels[i]) ax.legend() ax.set_xlabel('Params') ax.set_ylabel('Loss') return fig # import matplotlib as mpl @render.plot() def plot_big_boy_model(): fig = None df = pd.read_csv('training_data_5.csv') mpl.rcParams.update(mpl.rcParamsDefault) fig = plot_loss_rates_model_scale(df,input.loss_type_scale(),input.model_type_scale()) return fig # @output # @render.plot # def plot_training_loss(): # # if csv_file() is None: # # return None # df = pd.read_csv('results - denseformer.csv') # filtered_df = df[ # (df["param_type"].isin(input.param_type())) # & (df["model_type"].isin(input.model_type())) # & (df["loss_type"].isin(input.loss_type())) # ] # if filtered_df.empty: # return None # # Define colors for sizes and shapes for loss types # size_colors = { # "14": "blue", # "31": "green", # "70": "orange", # "160": "red" # } # loss_markers = { # "compliment": "o", # "cross_entropy": "^", # "headless": "s" # } # # Create the plot # fig, ax = plt.subplots(figsize=(10, 6)) # # Plot each combination of size and loss type # for size in filtered_df["param_type"].unique(): # for loss_type in filtered_df["loss_type"].unique(): # data = filtered_df[(filtered_df["param_type"] == size) & (filtered_df["loss_type"] == loss_type)] # ax.plot(data["epoch"], data["loss"], marker=loss_markers[loss_type], color=size_colors[size], label=f"{size} - {loss_type}") # # Customize the plot # ax.set_xlabel("Epoch") # ax.set_ylabel("Loss") # # ax.set_title("Training Loss by Size and Loss Type", fontsize=16) # # Create a legend for sizes # size_legend = ax.legend(title="Size", loc="upper right") # ax.add_artist(size_legend) # # Create a separate legend for loss types # loss_legend_labels = ["Compliment", "Cross Entropy", "Headless"] # loss_legend_handles = [plt.Line2D([0], [0], marker=loss_markers[loss_type], color='black', linestyle='None', markersize=8) for loss_type in loss_markers] # loss_legend = ax.legend(loss_legend_handles, loss_legend_labels, title="Loss Type", loc="upper right") # plt.tight_layout() # return fig # # Define colors for sizes and shapes for loss types # size_colors = { # "14": "blue", # "31": "green", # "70": "orange", # "160": "red" # } # loss_markers = { # "compliment": "o", # "cross_entropy": "^", # "headless": "s" # } # # Create a relplot using Seaborn # g = sns.relplot( # data=filtered_df, # x="epoch", # y="loss", # hue="param_type", # style="loss_type", # palette=size_colors, # markers=loss_markers, # height=6, # aspect=1.5 # ) # # Customize the plot # g.set_xlabels("Epoch") # g.set_ylabels("Loss") # g.fig.suptitle("Training Loss by Size and Loss Type", fontsize=16) # g.add_legend(title="Size") # # Create a separate legend for loss types # loss_legend = plt.legend(title="Loss Type", loc="upper right", labels=["Compliment", "Cross Entropy", "Headless"]) # plt.gca().add_artist(loss_legend) # plt.tight_layout() # return g.fig # @render.image # def image(): # img = None # if input.plot_type() == "ColorSquare": # img = {"src": f"color_square_{input.virus_selector()[0]}_0.png", "alt": "ColorSquare"} # return img # return img