import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import datasets import numpy as np # import torch from utils.tree_utils import parse_functions, get_docstrings, grab_before_comments, line_chr2char, node_str_idx, replace_function from utils.html_utils import make_iframe, construct_embed from utils.generation import combine_generation_kwargs, stream_generation, construct_model_context PIPE = None intro_text = """ # Welcome to the interactive shadercoding demo. This gives you access to a filtered version of the [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) dataset, only shaders that consist of a single pass are available. And then lets you use code generation models to make alterations to part of the shadercode. ## How To Use: 1. Load any Model for [`text-generation`](https://huggingface.co/models?pipeline_tag=text-generation) and hit ENTER. 2. Use the slider to sample a shader from the dataset. - The original shader will be embedding on the left, click on title to get to the source. - The shadercode will be displayed on the right, this is interactive. - A preview of the currently displayed shadercode will be displayed on the lower left. (hover to advance time) 3. use the dropdown to select a function to modify. 4. press either button to make modifications to that function 5. you can also edit the code manually. """ outro_text =""" ## Models to try (look at [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval) for an indication of how helpful they will be): - [gpt2](https://huggingface.co/gpt2) baseline for language models, really struggles with shadercode. - [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) a newer and larger freely available model. Does understand a big of code. - [codeparrot/codeparrot-small](https://huggingface.co/codeparrot/codeparrot-small) a model trained on code, but not on shadercode. Manages to graps the patterns. - [salesforce/codegen-2B-multi](https://huggingface.co/salesforce/codegen-2B-multi) a larger model that indicates some potential. - [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) a model trained on subset of [TheStack](https://huggingface.co/datasets/bigcode/the-stack), struggles with shadercode. - [Vipitis/santacoder-finetuned-the-stack-glsl](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl) fine-tuned by me on the glsl subset of [TheStack](https://huggingface.co/datasets/bigcode/the-stack), is an improvement. - [Vipitis/santacoder-finetuned-Shadertoys](https://huggingface.co/Vipitis/santacoder-finetuned-Shadertoys) fine-tuned by me on whole shaders from [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys). Does overfit quite a bit with greedy decoding. - [Vipitis/santacoder-finetuned-Shadertoys-fine](https://huggingface.co/Vipitis/santacoder-finetuned-Shadertoys-fine) fine-tuned by me just functions from [Shadertoys-fine](https://huggingface.co/datasets/Vipitis/Shadertoys-fine). Memorizes the exact function about half the time. - [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) a very large model which I haven't tried yet. - **any other model you want to** ## TODO (feel free to contribute with a [Pull-Request](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl/discussions?status=open&type=pull_request)): - [x] use embedded Shadertoy for reference/attribution (done, but some errors) - [~] working render implementation on CPU only space (as webgl via webglfundamentals, ccs needs fixing for iframe (or hijack Shadertoy iframe)) - [~] generate variations of return statements [ShaderEval task1](https://huggingface.co/spaces/Vipitis/ShaderEval) (needs to be reworked using the other parts) - [x] generate whole functions (seems to work quite well) - [] dropdown for model selection (from curated list or all supported models?) - [] generation history stating which function and orig/generated returns. (use State ??). do it as comments in the code? - [~] display errros/issues to the user (raise gr.Error could be one idea, but highlighting in the code would be awesome) currently adds a comment to the code. - [~] generate whole shaders (via prompts guidance, recursive from errors) - prompt context is in progress. - [x] accordion with generation parameters (as pipeline_kwargs?) look up starcoder playround and take "inspiration" from there (implemented for both buttons, untested) - [] support FIM task for better model context - [x] include some context for prompt (title, comments before a functions) - now takes all comments directly before a function as well as all comments at the beginning inside a function. (misses comments between argument list and body) - [] gradio examples - [x] use GPU if available, respect memory restrictions (implemented via accelerate.Accelerator.device in utils.generation.py), tested with A750 successfully! - [x] stream model generation (maybe in a new window?) - janky solution and only sometimes hangs up - [] 2nd iFrame needs a lot of fixing (I am not a web developer, need help) BUG:background is white, so colors are wrong. Shadertoy uses black background (or we ignore alpha). - [] (optional) filtering the dataset by license? ### Notes: - this is meant as a resource to show code generation for a "creative" task. - the goal is not to not replace shader artists, but aims to be an assistant instead. - the space still lacks quite a lot of features, but will continue to evolve. - this demo can be useful to sannity check evaluation results, where the academic numbers are made. - If you create a remix with these tools, please attribute the original creator of your starting point when sharing the results. (And perhaps share in the [discussion tab](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl/discussions?status=open&type=discussion) too) """ new_shadertoy_code = """void mainImage( out vec4 fragColor, in vec2 fragCoord ) { // touch the slider to load a shader from the dataset or start coding from here. vec2 uv = fragCoord/iResolution.xy; vec3 col = 0.5 + 0.5*cos(iTime+uv.xyx+vec3(0,2,4)); fragColor = vec4(col,1.0); }""" def grab_sample(sample_idx): sample_pass = all_single_passes[sample_idx] sample_code = sample_pass["code"] sample_source = sample_pass["source"] sample_title = sample_pass["title"] sample_auhtor = sample_pass["author"] source_iframe = construct_embed(sample_source) print(f"{source_iframe=}") # sample_funcs = _parse_functions(sample_code) # funcs = _parse_functions(sample_code) # func_identifiers = [f"{idx:2d}: {n.child_by_field_name('declarator').text.decode()}" for idx, n in enumerate(funcs)] # print(f"updating drop down to:{func_identifiers}") return sample_pass, sample_code, sample_title, source_iframe#, gr.Dropdown.update(choices=func_identifiers) #, sample_title, sample_auhtor def _make_pipeline(model_cp = "Vipitis/santacoder-finetuned-Shadertoys-fine"): #bad default model for testing # if torch.cuda.is_available(): # device = "cuda" # else: # device = "cpu" tokenizer = AutoTokenizer.from_pretrained(model_cp, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_cp, trust_remote_code=True) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True) #, device=device) PIPE = pipe # set the global? print(f"loaded model {model_cp} as a pipline") return pipe def process_retn(retn): return retn.split(";")[0].strip() def get_full_replacement(orig_code, retn_start_idx, retn_end_idx, prediction) -> str: """ Batches the generated return statement into the code and returns the full altered code. """ print(f"{orig_code[retn_start_idx:retn_end_idx]=}") generated = process_retn(prediction) print(f"{generated=}") variation = orig_code[:retn_start_idx] + generated + orig_code[retn_end_idx:] return variation def alter_return(orig_code, func_idx, temperature, max_new_tokens, top_p, repetition_penalty, pipeline=PIPE): #default pipeline can't be passed as gloabl? """ Replaces the return statement of a function with a generated one. Args: orig_code (str): The original code. func_idx (int): The index of the function to replace the return statement of. temperature (float): The temperature to use for generation. max_new_tokens (int): The maximum number of tokens to generate. top_p (float): The top_p to use for generation. repetition_penalty (float): The repetition_penalty to use for generation. pipeline (Pipeline): The pipeline to use for generation. Returns: str: The altered code. """ if pipeline is None: print("no pipeline found, loading default one") pipeline = _make_pipeline() if isinstance(func_idx, str): print(f"{func_idx=}") func_idx = int(func_idx.split(":")[0].strip()) elif isinstance(func_idx, int): pass else: raise gr.Error(f"func_idx must be int or str, not {type(func_idx)}") generation_kwargs = combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty) retrns = [] retrn_start_idx = orig_code.find("return") while retrn_start_idx != -1: retrn_end_idx = orig_code.find(";", retrn_start_idx) retrns.append((retrn_start_idx, retrn_end_idx)) retrn_start_idx = orig_code.find("return", retrn_end_idx) num_returns = len(retrns) if num_returns == 0: print("no return statement found, returning original code") return orig_code func_idx = int(max(0, min(func_idx, num_returns - 1))) #clamp to valid range, cast to int as a bodge. retrn_start_idx, retrn_end_idx = retrns[func_idx] model_context = orig_code[:retrn_start_idx] #TODO: maximal context? model_inp = model_context + "return" pipe_generation = pipeline(model_inp, return_full_text=False, **generation_kwargs)[0]["generated_text"] #pipeline kwargs are missing?! altered_code = get_full_replacement(orig_code, retrn_start_idx+7, retrn_end_idx, pipe_generation) return altered_code def alter_body(old_code, func_id, funcs_list: list, prompt="", temperature=0.2, max_new_tokens=512, top_p=.95, repetition_penalty=1.2, pipeline=PIPE): """ Replaces the body of a function with a generated one. Args: old_code (str): The original code. func_node (Node): The node of the function to replace the body of. funcs_list (list): The list of all functions in the code. prompt (str): The prompt(title) to use for generation. defaults to "". temperature (float): The temperature to use for generation. defaults to 0.2. max_new_tokens (int): The maximum number of tokens to generate. defaults to 512. top_p (float): The top_p to use for generation. defaults to 0.95. repetition_penalty (float): The repetition_penalty to use for generation. defaults to 1.2. pipeline (Pipeline): The pipeline to use for generation. Returns: str: The altered code. """ if isinstance(func_id, str): print(f"{func_id=}") func_id = int(func_id.split(":")[0].strip()) #undo their string casting? elif isinstance(func_id, int): pass else: raise gr.Error(f"func_id must be int or str, not {type(func_id)}") func_node = funcs_list[func_id] print(f"using for generation: {func_node=}") generation_kwargs = combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty) model_context = construct_model_context(func_node, prompt=prompt)[0] print(f"{model_context=}") body_node = func_node.child_by_field_name("body") body_start_idx, body_end_idx = node_str_idx(body_node) # generation = pipeline(model_context, return_full_text=False, **generation_kwargs)[0]["generated_text"] generation = stream_generation(model_context, pipeline, generation_kwargs) for i in generation: # print(f"{i=}") yield model_context + i #fix in between, do all the stuff in the end? generation = i[:] #seems to work print(f"{generation=}") ctx_with_generation = model_context + generation try: #strip the body first_gened_func = parse_functions(ctx_with_generation)[0] # truncate generation to a single function? except IndexError: print("generation wasn't a full function.") altered_code = old_code[:body_start_idx] + generation + "//the generation didn't complete the function!\n" + old_code[body_end_idx:] #needs a newline to break out of the comment. return altered_code altered_code = replace_function(func_node, first_gened_func) yield altered_code #yield once so it updates? -> works... gg but doesn't seem to do it for the dropdown return altered_code #never gets used by the code block? maybe I need to yield it first? but works in the ov_notebook def list_dropdown_options(in_code): #only used for auto update, not on sample pick? funcs = parse_functions(in_code) func_identifiers = [f"{idx:2d}: {n.child_by_field_name('declarator').text.decode()}" for idx, n in enumerate(funcs)] # funcs = [n for n in funcs] #wrapped as set to avoid json issues? print(f"updating drop down to:{func_identifiers}") return funcs, gr.Dropdown(choices=func_identifiers) if __name__ == "__main__": #works on huggingface? passes_dataset = datasets.load_dataset("Vipitis/Shadertoys") single_passes = passes_dataset.filter(lambda x: not x["has_inputs"] and x["num_passes"] == 1) #could also include shaders with no extra functions. # single_passes = single_passes.filter(lambda x: x["license"] not in "copyright") #to avoid any "do not display this" license? all_single_passes = datasets.concatenate_datasets([single_passes["train"], single_passes["test"]]) num_samples = len(all_single_passes) with gr.Blocks() as demo: top_md = gr.Markdown(intro_text) model_cp = gr.Textbox(value="Vipitis/santacoder-finetuned-Shadertoys-fine", label="Model Checkpoint (Enter to load!)", interactive=True) sample_idx = gr.Slider(minimum=0, maximum=10513, value=3211, label="pick sample from dataset", step=1.0) func_dropdown = gr.Dropdown(choices=["0: edit the Code (or load a shader) to update this dropdown"], label="chose a function to modify") #breaks if I add a string in before that? #TODO: use type="index" to get int - always gives None? prompt_text = gr.Textbox(value="the title used by the model has generation hint", label="prompt text", info="leave blank to skip", interactive=True) with gr.Accordion("Advanced settings", open=False): # from: https://huggingface.co/spaces/bigcode/bigcode-playground/blob/main/app.py with gr.Row(): column_1, column_2 = gr.Column(), gr.Column() with column_1: temperature = gr.Slider( label="Temperature", value=0.2, #start out at 0 to do greedy? or will there be an error? minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ) max_new_tokens = gr.Slider( label="Max new tokens", value=265, minimum=0, maximum=2048, #this could be inferred from the model? step=32, interactive=True, info="The maximum numbers of new tokens", ) with column_2: top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ) repetition_penalty = gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) with gr.Row(): gen_return_button = gr.Button("generate a alternate return statement", scale=0) gen_func_button = gr.Button("generate an alternate function body", scale=1) with gr.Row(): with gr.Column(): source_embed = gr.HTML('', label="How this shader originally renders") our_embed = gr.HTML(label="glsl render of the current code") sample_code = gr.Code(new_shadertoy_code, label="Current Code (will update changes you generate)", language=None) bot_md = gr.Markdown(outro_text) sample_pass = gr.State(value={}) funcs = gr.State(value=[]) pipe = gr.State(value=PIPE) pipe.value=_make_pipeline("Vipitis/santacoder-finetuned-Shadertoys-fine") # set a default like this? model_cp.submit(fn=_make_pipeline, inputs=[model_cp], outputs=[pipe]) # how can we trigger this on load? sample_idx.release(fn=grab_sample, inputs=[sample_idx], outputs=[sample_pass, sample_code, prompt_text, source_embed]) #funcs here? gen_return_button.click(fn=alter_return, inputs=[sample_code, func_dropdown, temperature, max_new_tokens, top_p, repetition_penalty, pipe], outputs=[sample_code]) gen_func_button.click(fn=alter_body, inputs=[sample_code, func_dropdown, funcs, prompt_text, temperature, max_new_tokens, top_p, repetition_penalty, pipe], outputs=[sample_code]).then( fn=list_dropdown_options, inputs=[sample_code], outputs=[funcs, func_dropdown] ) sample_code.change(fn=list_dropdown_options, inputs=[sample_code], outputs=[funcs, func_dropdown]).then( fn=make_iframe, inputs=[sample_code], outputs=[our_embed]) demo.queue() demo.launch()