import tqdm import multiprocessing import pandas as pd import numpy as np import scipy.stats import os import sys script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append('..') sys.path.append('.') from sklearn import linear_model from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.preprocessing import MinMaxScaler skempi_vectors_path = None representation_name = None def load_representation(multi_col_representation_vector_file_path): print("\nLoading representation vectors...\n") multi_col_representation_vector = pd.read_csv(multi_col_representation_vector_file_path) vals = multi_col_representation_vector.iloc[:, 1:(len(multi_col_representation_vector.columns))] original_values_as_df = pd.DataFrame({'PDB_ID': pd.Series([], dtype='str'), 'Vector': pd.Series([], dtype='object')}) for index, row in tqdm.tqdm(vals.iterrows(), total=len(vals)): list_of_floats = [float(item) for item in list(row)] original_values_as_df.loc[index] = [multi_col_representation_vector.iloc[index]['PDB_ID']] + [list_of_floats] return original_values_as_df def calc_train_error(X_train, y_train, model): '''Returns in-sample error for an already fit model.''' predictions = model.predict(X_train) mse = mean_squared_error(y_train, predictions) mae = mean_absolute_error(y_train, predictions) corr = scipy.stats.pearsonr(y_train, predictions) return mse, mae, corr def calc_validation_error(X_test, y_test, model): '''Returns out-of-sample error for an already fit model.''' predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) mae = mean_absolute_error(y_test, predictions) corr = scipy.stats.pearsonr(y_test, predictions) return mse, mae, corr def calc_metrics(X_train, y_train, X_test, y_test, model): '''Fits the model and returns the metrics for in-sample and out-of-sample errors.''' model.fit(X_train, y_train) train_mse_error, train_mae_error, train_corr = calc_train_error(X_train, y_train, model) val_mse_error, val_mae_error, val_corr = calc_validation_error(X_test, y_test, model) return train_mse_error, val_mse_error, train_mae_error, val_mae_error, train_corr, val_corr def report_results( train_mse_error_list, validation_mse_error_list, train_mae_error_list, validation_mae_error_list, train_corr_list, validation_corr_list, train_corr_pval_list, validation_corr_pval_list, ): result_summary = { "train_mse_error": round(np.mean(train_mse_error_list) * 100, 4), "train_mse_std": round(np.std(train_mse_error_list) * 100, 4), "val_mse_error": round(np.mean(validation_mse_error_list) * 100, 4), "val_mse_std": round(np.std(validation_mse_error_list) * 100, 4), "train_mae_error": round(np.mean(train_mae_error_list) * 100, 4), "train_mae_std": round(np.std(train_mae_error_list) * 100, 4), "val_mae_error": round(np.mean(validation_mae_error_list) * 100, 4), "val_mae_std": round(np.std(validation_mae_error_list) * 100, 4), "train_corr": round(np.mean(train_corr_list), 4), "train_corr_pval": round(np.mean(train_corr_pval_list), 4), "validation_corr": round(np.mean(validation_corr_list), 4), "validation_corr_pval": round(np.mean(validation_corr_pval_list), 4), } result_detail = { "train_mse_errors": list(np.multiply(train_mse_error_list, 100)), "val_mse_errors": list(np.multiply(validation_mse_error_list, 100)), "train_mae_errors": list(np.multiply(train_mae_error_list, 100)), "val_mae_errors": list(np.multiply(validation_mae_error_list, 100)), "train_corrs": list(np.multiply(train_corr_list, 100)), "train_corr_pvals": list(np.multiply(train_corr_pval_list, 100)), "validation_corrs": list(np.multiply(validation_corr_list, 100)), "validation_corr_pvals": list(np.multiply(validation_corr_pval_list, 100)), } return result_summary, result_detail def predictAffinityWithModel(regressor_model, multiplied_vectors_df): K = 10 kf = KFold(n_splits=K, shuffle=True, random_state=42) train_mse_error_list = [] validation_mse_error_list = [] train_mae_error_list = [] validation_mae_error_list = [] train_corr_list = [] validation_corr_list = [] train_corr_pval_list = [] validation_corr_pval_list = [] data = np.array(np.asarray(multiplied_vectors_df["Vector"].tolist()), dtype=float) ppi_affinity_filtered_df = ppi_affinity_df[ ppi_affinity_df['Protein1'].isin(multiplied_vectors_df['Protein1']) & ppi_affinity_df['Protein2'].isin(multiplied_vectors_df['Protein2']) ] target = np.array(ppi_affinity_filtered_df["Affinity"]) scaler = MinMaxScaler() scaler.fit(target.reshape(-1, 1)) target = scaler.transform(target.reshape(-1, 1))[:, 0] for train_index, val_index in tqdm.tqdm(kf.split(data, target), total=K): # split data X_train, X_val = data[train_index], data[val_index] y_train, y_val = target[train_index], target[val_index] # instantiate model reg = regressor_model # calculate errors ( train_mse_error, val_mse_error, train_mae_error, val_mae_error, train_corr, val_corr, ) = calc_metrics(X_train, y_train, X_val, y_val, reg) # append to appropriate lists train_mse_error_list.append(train_mse_error) validation_mse_error_list.append(val_mse_error) train_mae_error_list.append(train_mae_error) validation_mae_error_list.append(val_mae_error) train_corr_list.append(train_corr[0]) validation_corr_list.append(val_corr[0]) train_corr_pval_list.append(train_corr[1]) validation_corr_pval_list.append(val_corr[1]) return report_results( train_mse_error_list, validation_mse_error_list, train_mae_error_list, validation_mae_error_list, train_corr_list, validation_corr_list, train_corr_pval_list, validation_corr_pval_list, ) ppi_affinity_file_path = "../data/auxilary_input/skempi_pipr/SKEMPI_all_dg_avg.txt" ppi_affinity_file = os.path.join(script_dir, ppi_affinity_file_path) ppi_affinity_df = pd.read_csv(ppi_affinity_file, sep="\t", header=None) ppi_affinity_df.columns = ['Protein1', 'Protein2', 'Affinity'] def calculate_vector_multiplications(skempi_vectors_df): multiplied_vectors = pd.DataFrame({ 'Protein1': pd.Series([], dtype='str'), 'Protein2': pd.Series([], dtype='str'), 'Vector': pd.Series([], dtype='object') }) print("Element-wise vector multiplications are being calculated") rep_prot_list = list(skempi_vectors_df['PDB_ID']) for index, row in tqdm.tqdm(ppi_affinity_df.iterrows()): if row['Protein1'] in rep_prot_list and row['Protein2'] in rep_prot_list: vec1 = list(skempi_vectors_df[skempi_vectors_df['PDB_ID'] == row['Protein1']]['Vector'])[0] vec2 = list(skempi_vectors_df[skempi_vectors_df['PDB_ID'] == row['Protein2']]['Vector'])[0] multiplied_vec = np.multiply(vec1, vec2) multiplied_vectors = multiplied_vectors.append({ 'Protein1': row['Protein1'], 'Protein2': row['Protein2'], 'Vector': multiplied_vec }, ignore_index=True) return multiplied_vectors def predict_affinities_and_report_results(): skempi_vectors_df = load_representation(skempi_vectors_path) multiplied_vectors_df = calculate_vector_multiplications(skempi_vectors_df) model = linear_model.BayesianRidge() result_summary, result_detail = predictAffinityWithModel(model, multiplied_vectors_df) # Return the results as a dictionary instead of writing to a file return { "summary": result_summary, "detail": result_detail }