import os import pandas as pd from huggingface_hub import HfApi script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the running script def save_results(method_name, benchmark_types, results, repo_id="mgyigit/probe-data", repo_type="space"): #First, download files to be updated from {repo_id} download_files_from_hub(benchmark_types, repo_id, repo_type) #Update local files for benchmark_type in benchmark_types: if benchmark_type == 'similarity': save_similarity_output(results['similarity'], method_name) elif benchmark_type == 'function': save_function_output(results['function'], method_name) elif benchmark_type == 'family': save_family_output(results['family'], method_name) elif benchmark_type == "affinity": save_affinity_output(results['affinity'], method_name) #Upload local files to the {repo_id} upload_to_hub(benchmark_types, repo_id, repo_type) return 0 def download_files_from_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="space"): api = HfApi(token=os.getenv("api-key")) #load api-key secret benchmark_types.append("leaderboard") for benchmark in benchmark_types: file_name = f"{benchmark}_results.csv" local_path = f"/tmp/{file_name}" try: # Download the file from the specified repo api.hf_hub_download( repo_id=repo_id, repo_type=repo_type, filename=file_name, local_dir="/tmp", token=os.getenv("api-key"), ) print(f"Downloaded {file_name} from {repo_id} to {local_path}") except Exception as e: print(f"Failed to download {file_name}: {e}") return 0 def upload_to_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="space"): api = HfApi(token=os.getenv("api_key")) # Requires authentication via HF_TOKEN for benchmark in benchmark_types: file_name = f"{benchmark}_results.csv" local_path = f"/tmp/{file_name}" api.upload_file( path_or_fileobj=local_path, path_in_repo=file_name, repo_id=repo_id, repo_type=repo_type, commit_message=f"Updating {file_name}" ) print(f"Uploaded {local_path} to {repo_id}/{file_name}") os.remove(local_path) print(f"Removed local file: {local_path}") return 0 def save_similarity_output( output_dict, method_name, leaderboard_path="/tmp/leaderboard_results.csv", similarity_path="/tmp/similarity_results.csv", ): # Load or initialize the DataFrames if os.path.exists(leaderboard_path): leaderboard_df = pd.read_csv(leaderboard_path) else: print("Leaderboard file not found!") return -1 if os.path.exists(similarity_path): similarity_df = pd.read_csv(similarity_path) else: print("Similarity file not found!") return -1 if method_name not in similarity_df['Method'].values: # Create a new row for the method with default values new_row = {col: None for col in similarity_df.columns} new_row['Method'] = method_name similarity_df = pd.concat([similarity_df, pd.DataFrame([new_row])], ignore_index=True) if method_name not in leaderboard_df['Method'].values: new_row = {col: None for col in leaderboard_df.columns} new_row['Method'] = method_name leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) averages = {} for dataset in ['sparse', '200', '500']: correlation_values = [] pvalue_values = [] for aspect in ['MF', 'BP', 'CC']: correlation_key = f"{dataset}_{aspect}_correlation" pvalue_key = f"{dataset}_{aspect}_pvalue" # Update correlation if present if correlation_key in output_dict: correlation = output_dict[correlation_key].item() correlation_values.append(correlation) similarity_df.loc[similarity_df['Method'] == method_name, correlation_key] = correlation leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{correlation_key}"] = correlation # Update p-value if present if pvalue_key in output_dict: pvalue = output_dict[pvalue_key].item() pvalue_values.append(pvalue) similarity_df.loc[similarity_df['Method'] == method_name, pvalue_key] = pvalue leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{pvalue_key}"] = pvalue # Calculate averages if all three aspects are present if len(correlation_values) == 3: averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3 similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"] leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"] if len(pvalue_values) == 3: averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3 similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"] leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"] leaderboard_df.to_csv(leaderboard_path, index=False) similarity_df.to_csv(similarity_path, index=False) return 0 def save_function_output( model_output, method_name, func_results_path="/tmp/function_results.csv", leaderboard_path="/tmp/leaderboard_results.csv" ): # Load or initialize the DataFrames if os.path.exists(leaderboard_path): leaderboard_df = pd.read_csv(leaderboard_path) else: print("Leaderboard file not found!") return -1 if os.path.exists(func_results_path): func_results_df = pd.read_csv(func_results_path) else: print("Function file not found!") return -1 if method_name not in func_results_df['Method'].values: # Create a new row for the method with default values new_row = {col: None for col in func_results_df.columns} new_row['Method'] = method_name func_results_df = pd.concat([func_results_df, pd.DataFrame([new_row])], ignore_index=True) if method_name not in leaderboard_df['Method'].values: new_row = {col: None for col in leaderboard_df.columns} new_row['Method'] = method_name leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) # Storage for averaging in leaderboard results metrics_sum = { 'accuracy': {'BP': [], 'CC': [], 'MF': []}, 'F1': {'BP': [], 'CC': [], 'MF': []}, 'precision': {'BP': [], 'CC': [], 'MF': []}, 'recall': {'BP': [], 'CC': [], 'MF': []} } # Iterate over each entry in model_output for entry in model_output: key = entry[0] accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10] # Parse the key to extract the aspect and datasets aspect, dataset1, dataset2 = key.split('_') # Save each metric to function_results under its respective column func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1 func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall # Add values for leaderboard averaging metrics_sum['accuracy'][aspect].append(accuracy) metrics_sum['F1'][aspect].append(f1) metrics_sum['precision'][aspect].append(precision) metrics_sum['recall'][aspect].append(recall) # Calculate averages for each aspect and overall (if all aspects have entries) for metric in ['accuracy', 'F1', 'precision', 'recall']: for aspect in ['BP', 'CC', 'MF']: if metrics_sum[metric][aspect]: aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect]) leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_{aspect}_{metric}"] = aspect_average # Calculate overall average if each aspect has entries if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']): overall_average = sum( sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect]) for aspect in ['BP', 'CC', 'MF'] ) / 3 leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_Ave_{metric}"] = overall_average # Save updated DataFrames to CSV func_results_df.to_csv(func_results_path, index=False) leaderboard_df.to_csv(leaderboard_path, index=False) return 0 def save_family_output( model_output, method_name, leaderboard_path="/tmp/leaderboard_results.csv", family_results_path="/tmp/family_results.csv" ): # Load or initialize the DataFrames if os.path.exists(leaderboard_path): leaderboard_df = pd.read_csv(leaderboard_path) else: print("Leaderboard file not found!") return -1 if os.path.exists(family_results_path): family_results_df = pd.read_csv(family_results_path) else: print("Family file not found!") return -1 if method_name not in family_results_df['Method'].values: # Create a new row for the method with default values new_row = {col: None for col in family_results_df.columns} new_row['Method'] = method_name family_results_df = pd.concat([family_results_df, pd.DataFrame([new_row])], ignore_index=True) if method_name not in leaderboard_df['Method'].values: new_row = {col: None for col in leaderboard_df.columns} new_row['Method'] = method_name leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) # Iterate through the datasets and metrics for dataset, metrics in model_output.items(): for metric, values in metrics.items(): # Calculate the average for each metric in leaderboard results avg_value = sum(values) / len(values) if values else None leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value # Save each fold result for family results for i, value in enumerate(values): family_results_df.loc[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value # Save updated DataFrames to CSV leaderboard_df.to_csv(leaderboard_path, index=False) family_results_df.to_csv(family_results_path, index=False) return 0 def save_affinity_output( model_output, method_name, leaderboard_path="/tmp/leaderboard_results.csv", affinity_results_path="/tmp/affinity_results.csv" ): # Load or initialize the DataFrames if os.path.exists(leaderboard_path): leaderboard_df = pd.read_csv(leaderboard_path) else: print("Leaderboard file not found!") return -1 if os.path.exists(affinity_results_path): affinity_results_df = pd.read_csv(affinity_results_path) else: print("Affinity file not found!") return -1 if method_name not in affinity_results_df['Method'].values: # Create a new row for the method with default values new_row = {col: None for col in affinity_results_df.columns} new_row['Method'] = method_name affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame([new_row])], ignore_index=True) if method_name not in leaderboard_df['Method'].values: new_row = {col: None for col in leaderboard_df.columns} new_row['Method'] = method_name leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) # Process 'summary' section for leaderboard results summary = model_output.get('summary', {}) if summary: leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error') leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error') leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr') # Process 'detail' section for affinity results detail = model_output.get('detail', {}) if detail: # Save each 10-fold cross-validation result for mse, mae, and corr for i in range(10): if 'val_mse_errors' in detail: affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i] if 'val_mae_errors' in detail: affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i] if 'validation_corrs' in detail: affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"correlation_{i}"] = detail['validation_corrs'][i] # Save updated DataFrames to CSV leaderboard_df.to_csv(leaderboard_path, index=False) affinity_results_df.to_csv(affinity_results_path, index=False) return 0