__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] import gradio as gr import pandas as pd import re import os import json import yaml import matplotlib.pyplot as plt import seaborn as sns import plotnine as p9 import sys sys.path.append('./src') sys.path.append('.') from src.about import * from src.saving_utils import * from src.vis_utils import * from src.bin.PROBE import run_probe def add_new_eval( human_file, skempi_file, model_name_textbox: str, revision_name_textbox: str, benchmark_types, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset, save, ): representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox results = run_probe(benchmark_types, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset) print(results) if save: save_results(representation_name, benchmark_types, results) print("Results are saved!") return 0 # Function to update leaderboard dynamically based on user selection def update_leaderboard(selected_methods, selected_metrics): return get_baseline_df(selected_methods, selected_metrics) block = gr.Blocks() with block: gr.Markdown(LEADERBOARD_INTRODUCTION) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1): method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist() metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist() metrics_with_method = metric_names.copy() metric_names.remove('method_name') # Remove method_name from the metric options # Leaderboard section with method and metric selectors leaderboard_method_selector = gr.CheckboxGroup( choices=method_names, label="Select Methods for Leaderboard", value=method_names, interactive=True ) leaderboard_metric_selector = gr.CheckboxGroup( choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True ) # Display the filtered leaderboard baseline_value = get_baseline_df(method_names, metric_names) baseline_header = ["method_name"] + metric_names baseline_datatype = ['markdown'] + ['number'] * len(metric_names) with gr.Row(show_progress=True, variant='panel'): data_component = gr.components.Dataframe( value=baseline_value, headers=baseline_header, type="pandas", datatype=baseline_datatype, interactive=False, visible=True, ) # Update leaderboard when method/metric selection changes leaderboard_method_selector.change( update_leaderboard, inputs=[leaderboard_method_selector, leaderboard_metric_selector], outputs=data_component ) leaderboard_metric_selector.change( update_leaderboard, inputs=[leaderboard_method_selector, leaderboard_metric_selector], outputs=data_component ) with gr.Row(): gr.Markdown( """ ## **Below, you can visualize the results displayed in the Leaderboard.** ### Once you choose a benchmark type, the related options for metrics, datasets, and other parameters will become visible. Select the methods and metrics of interest from the options to generate visualizations. """ ) # Dropdown for benchmark type benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type", value=None) with gr.Row(): # Dynamic selectors x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False) y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False) aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False) dataset_type_selector = gr.Dropdown(choices=[], label="Select Dataset Type", visible=False) dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False) single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False) method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names) # Button to draw the plot for the selected benchmark plot_button = gr.Button("Plot") with gr.Row(show_progress=True, variant='panel'): plot_output = gr.Image(label="Plot") # Update selectors when benchmark type changes benchmark_type_selector.change( update_metric_choices, inputs=[benchmark_type_selector], outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_type_selector, dataset_selector, single_metric_selector] ) plot_button.click( benchmark_plot, inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_type_selector, dataset_selector, single_metric_selector], outputs=plot_output ) with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2): with gr.Row(): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Row(): gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): model_name_textbox = gr.Textbox( label="Method name", ) revision_name_textbox = gr.Textbox( label="Revision Method Name", ) benchmark_types = gr.CheckboxGroup( choices=TASK_INFO, label="Benchmark Types", interactive=True, ) similarity_tasks = gr.CheckboxGroup( choices=similarity_tasks_options, label="Similarity Tasks", interactive=True, ) function_prediction_aspect = gr.Radio( choices=function_prediction_aspect_options, label="Function Prediction Aspects", interactive=True, ) family_prediction_dataset = gr.CheckboxGroup( choices=family_prediction_dataset_options, label="Family Prediction Datasets", interactive=True, ) function_dataset = gr.Textbox( label="Function Prediction Datasets", visible=False, value="All_Data_Sets" ) save_checkbox = gr.Checkbox( label="Save results for leaderboard and visualization", value=True ) #with gr.Column(): with gr.Row(): human_file = gr.components.File(label="The representation file (csv) for Human dataset", file_count="single", type='filepath') skempi_file = gr.components.File(label="The representation file (csv) for SKEMPI dataset", file_count="single", type='filepath') submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, inputs=[ human_file, skempi_file, model_name_textbox, revision_name_textbox, benchmark_types, similarity_tasks, function_prediction_aspect, function_dataset, family_prediction_dataset, save_checkbox, ], ) def refresh_data(): value = get_baseline_df(method_names, metric_names) return value with gr.Row(): data_run = gr.Button("Refresh") data_run.click(refresh_data, outputs=[data_component]) with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", show_copy_button=True, ) block.launch()