# -*- coding: utf-8 -*- """ Created on Mon Jun 8 09:32:26 2020 @author: Muammer """ import os script_dir = os.path.dirname(os.path.abspath(__file__)) import numpy as np from sklearn.model_selection import train_test_split from sklearn import linear_model from sklearn.metrics import ( f1_score, accuracy_score, confusion_matrix, classification_report, matthews_corrcoef ) from sklearn.multiclass import OneVsRestClassifier import pandas as pd from tqdm import tqdm import math representation_name = "" representation_path = "" dataset = "nc" detailed_output = False def convert_dataframe_to_multi_col(representation_dataframe): entry = pd.DataFrame(representation_dataframe['Entry']) vector = pd.DataFrame(list(representation_dataframe['Vector'])) multi_col_representation_vector = pd.merge(left=entry, right=vector, left_index=True, right_index=True) return multi_col_representation_vector def class_based_scores(c_report, c_matrix): c_report = pd.DataFrame(c_report).transpose() c_report = c_report.drop(['precision', 'recall'], axis=1) c_report = c_report.drop(labels=['accuracy', 'macro avg', 'weighted avg'], axis=0) cm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis] accuracy = cm.diagonal() accuracy = pd.Series(accuracy, index=c_report.index) c_report['accuracy'] = accuracy total = c_report['support'].sum() num_classes = np.shape(c_matrix)[0] mcc = np.zeros(shape=(num_classes,), dtype='float32') for j in range(num_classes): tp = np.sum(c_matrix[j, j]) fp = np.sum(c_matrix[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))]) fn = np.sum(c_matrix[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j]) tn = int(total - tp - fp - fn) mcc[j] = ((tp * tn) - (fp * fn)) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) mcc = pd.Series(mcc, index=c_report.index) c_report['mcc'] = mcc return c_report def score_protein_rep(dataset): protein_list = pd.read_csv(os.path.join(script_dir, '../data/preprocess/entry_class_nn.csv')) dataframe = pd.read_csv(representation_path) vecsize = dataframe.shape[1] - 1 x = np.empty([0, vecsize]) xemp = np.zeros((1, vecsize), dtype=float) y = [] ne = [] print("\n\nPreprocessing data for drug-target protein family prediction...\n ") for index, row in tqdm(protein_list.iterrows(), total=len(protein_list)): pdrow = dataframe.loc[dataframe['Entry'] == row['Entry']] if len(pdrow) != 0: a = pdrow.loc[:, pdrow.columns != 'Entry'] a = np.array(a) a.shape = (1, vecsize) x = np.append(x, a, axis=0) y.append(row['Class']) else: ne.append(index) x = np.append(x, xemp, axis=0) y.append(0.0) x = x.astype(np.float64) y = np.array(y) y = y.astype(np.float64) target_names = ['Enzyme', 'Membrane receptor', 'Transcription factor', 'Ion channel', 'Other'] labels = [1.0, 11.0, 12.0, 1005.0, 2000.0] f1 = [] accuracy = [] mcc = [] report_list = [] train_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/' + dataset + '_trainindex.csv')) test_index = pd.read_csv(os.path.join(script_dir, '../data/preprocess/indexes/testindex_family.csv')) train_index = train_index.dropna(axis=1) test_index = test_index.dropna(axis=1) conf_matrices = [] print('Producing protein family predictions...\n') for i in tqdm(range(10)): clf = linear_model.SGDClassifier(class_weight="balanced", loss="log", penalty="elasticnet", max_iter=1000, tol=1e-3, random_state=i, n_jobs=-1) clf2 = OneVsRestClassifier(clf, n_jobs=-1) train_indexx = train_index.iloc[i].astype(int) test_indexx = test_index.iloc[i].astype(int) for index in ne: train_indexx = train_indexx[train_indexx != index] test_indexx = test_indexx[test_indexx != index] train_X, test_X = x[train_indexx], x[test_indexx] train_y, test_y = y[train_indexx], y[test_indexx] clf2.fit(train_X, train_y) y_pred = clf2.predict(test_X) f1_ = f1_score(test_y, y_pred, average='weighted') f1.append(f1_) ac = accuracy_score(test_y, y_pred) accuracy.append(ac) c_report = classification_report(test_y, y_pred, target_names=target_names, output_dict=True) c_matrix = confusion_matrix(test_y, y_pred, labels=labels) conf_matrices.append(c_matrix) class_report = class_based_scores(c_report, c_matrix) mcc_score = matthews_corrcoef(test_y, y_pred) mcc.append(mcc_score) report_list.append(class_report) f1_perclass = pd.concat([r['f1-score'] for r in report_list], axis=1) ac_perclass = pd.concat([r['accuracy'] for r in report_list], axis=1) mcc_perclass = pd.concat([r['mcc'] for r in report_list], axis=1) results = { "f1": f1, "accuracy": accuracy, "mcc": mcc, "confusion_matrices": conf_matrices, "class_reports": report_list, "f1_per_class": f1_perclass, "accuracy_per_class": ac_perclass, "mcc_per_class": mcc_perclass } return results