import yaml import pandas as pd import tqdm from . import semantic_similarity_infer as ssi from . import target_family_classifier as tfc from . import function_predictor as fp from . import binding_affinity_estimator as bae def load_representation(multi_col_representation_vector_file_path): multi_col_representation_vector = pd.read_csv(multi_col_representation_vector_file_path) vals = multi_col_representation_vector.iloc[:,1:(len(multi_col_representation_vector.columns))] original_values_as_df = pd.DataFrame({'Entry': pd.Series([], dtype='str'),'Vector': pd.Series([], dtype='object')}) for index, row in tqdm.tqdm(vals.iterrows(), total = len(vals)): list_of_floats = [float(item) for item in list(row)] original_values_as_df.loc[index] = [multi_col_representation_vector.iloc[index]['Entry']] + [list_of_floats] return original_values_as_df def run_probe(benchmarks, representation_name, representation_file_human, representation_file_affinity, similarity_tasks=["Sparse","200","500"], function_prediction_aspect="All_Aspects", function_prediction_dataset="All_Data_Sets", family_prediction_dataset=["nc","uc50","uc30","mm15"], detailed_output=False): print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n") if any(item in ['similarity', 'function', 'family', 'all'] for item in benchmarks): print("\nRepresentation vectors are loading...\n") human_representation_dataframe = load_representation(representation_file_human) if "similarity" in benchmarks: print("\nSemantic similarity Inference Benchmark is running...\n") ssi.representation_dataframe = human_representation_dataframe ssi.representation_name = representation_name ssi.protein_names = ssi.representation_dataframe['Entry'].tolist() ssi.similarity_tasks = similarity_tasks ssi.detailed_output = detailed_output similarity_result = ssi.calculate_all_correlations() print("Similarity Result:") print(similarity_result) if "function" in benchmarks: print("\n\nOntology-based protein function prediction benchmark is running...\n") fp.aspect_type = function_prediction_aspect fp.dataset_type = function_prediction_dataset fp.representation_dataframe = human_representation_dataframe fp.representation_name = representation_name fp.detailed_output = detailed_output function_results = fp.pred_output() print("Function results:") print(function_results) if "family" in benchmarks: print("\n\nDrug target protein family classification benchmark is running...\n") tfc.representation_path = representation_file_human tfc.representation_name = representation_name tfc.detailed_output = detailed_output for dataset in family_prediction_dataset: family_result = tfc.score_protein_rep(dataset) print(f"Family results for {dataset}:") print(family_result) if "affinity" in benchmarks: print("\n\nProtein-protein binding affinity estimation benchmark is running...\n") bae.skempi_vectors_path = representation_file_affinity bae.representation_name = representation_name affinity_result = bae.predict_affinities_and_report_results() print("Affinity Results:") print(affinity_result) print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n") return 0