PROBE / src /bin /function_predictor.py
mgyigit's picture
Update src/bin/function_predictor.py
ad10c64 verified
raw
history blame
6.45 kB
# -*- coding: utf-8 -*-
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
import pandas as pd
import numpy as np
from datetime import datetime
import multiprocessing
from tqdm import tqdm
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_predict, KFold
from skmultilearn.problem_transform import BinaryRelevance
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, hamming_loss
aspect_type = ""
dataset_type = ""
representation_dataframe = ""
representation_name = ""
detailed_output = False
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
def check_for_at_least_two_class_sample_exits(y):
for column in y:
column_sum = np.sum(y[column].array)
if column_sum < 2:
print('At least 2 positive samples are required for each class {0} class has {1} positive samples'.format(column, column_sum))
return False
return True
def create_valid_kfold_object_for_multilabel_splits(X, y, kf):
if not check_for_at_least_two_class_sample_exits(y):
return None
sample_class_occurance = dict(zip(y.columns, np.zeros(len(y.columns))))
for column in y:
for fold_train_index, fold_test_index in kf.split(X, y):
fold_col_sum = np.sum(y.iloc[fold_test_index, :][column].array)
if fold_col_sum > 0:
sample_class_occurance[column] += 1
for key, value in sample_class_occurance.items():
if value < 2:
random_state = np.random.randint(1000)
print(f"Random state is changed since at least two positive samples are required in different train/test folds. "
f"However, only one fold exists with positive samples for class {key}")
print(f"Selected random state is {random_state}")
kf = KFold(n_splits=5, shuffle=True, random_state=random_state)
return create_valid_kfold_object_for_multilabel_splits(X, y, kf)
return kf
def MultiLabelSVC_cross_val_predict(representation_name, dataset, X, y, classifier):
clf = classifier
Xn = np.array(X.tolist(), dtype=float)
kf_init = KFold(n_splits=5, shuffle=True, random_state=42)
kf = create_valid_kfold_object_for_multilabel_splits(X, y, kf_init)
if kf is None:
return None
y_pred = cross_val_predict(clf, Xn, y, cv=kf)
acc_cv, f1_mi_cv, f1_ma_cv, f1_we_cv = [], [], [], []
pr_mi_cv, pr_ma_cv, pr_we_cv = [], [], []
rc_mi_cv, rc_ma_cv, rc_we_cv = [], [], []
hamm_cv = []
for fold_train_index, fold_test_index in kf.split(X, y):
acc = accuracy_score(y.iloc[fold_test_index, :], y_pred[fold_test_index])
acc_cv.append(np.round(acc, decimals=5))
f1_mi_cv.append(np.round(f1_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="micro"), decimals=5))
f1_ma_cv.append(np.round(f1_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="macro"), decimals=5))
f1_we_cv.append(np.round(f1_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="weighted"), decimals=5))
pr_mi_cv.append(np.round(precision_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="micro"), decimals=5))
pr_ma_cv.append(np.round(precision_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="macro"), decimals=5))
pr_we_cv.append(np.round(precision_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="weighted"), decimals=5))
rc_mi_cv.append(np.round(recall_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="micro"), decimals=5))
rc_ma_cv.append(np.round(recall_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="macro"), decimals=5))
rc_we_cv.append(np.round(recall_score(y.iloc[fold_test_index, :], y_pred[fold_test_index], average="weighted"), decimals=5))
hamm_cv.append(np.round(hamming_loss(y.iloc[fold_test_index, :], y_pred[fold_test_index]), decimals=5))
means = list(np.mean([acc_cv, f1_mi_cv, f1_ma_cv, f1_we_cv, pr_mi_cv, pr_ma_cv, pr_we_cv, rc_mi_cv, rc_ma_cv, rc_we_cv, hamm_cv], axis=1))
means = [np.round(i, decimals=5) for i in means]
#stds = list(np.std([acc_cv, f1_mi_cv, f1_ma_cv, f1_we_cv, pr_mi_cv, pr_ma_cv, pr_we_cv, rc_mi_cv, rc_ma_cv, rc_we_cv, hamm_cv], axis=1))
#stds = [np.round(i, decimals=5) for i in stds]
return {
"means": [dataset] + means,
}
def ProtDescModel():
datasets = os.listdir(os.path.join(script_dir, r"../data/auxilary_input/GO_datasets"))
if dataset_type == "All_Data_Sets" and aspect_type == "All_Aspects":
filtered_datasets = datasets
elif dataset_type == "All_Data_Sets":
filtered_datasets = [dataset for dataset in datasets if aspect_type in dataset]
elif aspect_type == "All_Aspects":
filtered_datasets = [dataset for dataset in datasets if dataset_type in dataset]
else:
filtered_datasets = [dataset for dataset in datasets if aspect_type in dataset and dataset_type in dataset]
#cv_results = []
cv_mean_results = []
#cv_std_results = []
for dt in tqdm(filtered_datasets, total=len(filtered_datasets)):
print(f"Protein function prediction is started for the dataset: {dt.split('.')[0]}")
dt_file = pd.read_csv(os.path.join(script_dir, f"../data/auxilary_input/GO_datasets/{dt}"), sep="\t")
dt_merge = dt_file.merge(representation_dataframe, left_on="Protein_Id", right_on="Entry")
dt_X = dt_merge['Vector']
dt_y = dt_merge.iloc[:, 1:-2]
if not check_for_at_least_two_class_sample_exits(dt_y):
print(f"No function will be predicted for the dataset: {dt.split('.')[0]}")
continue
cpu_number = multiprocessing.cpu_count()
model = MultiLabelSVC_cross_val_predict(representation_name, dt.split(".")[0], dt_X, dt_y,
classifier=BinaryRelevance(SGDClassifier(n_jobs=cpu_number, random_state=42)))
if model is not None:
#cv_results.append(model["cv_results"])
cv_mean_results.append(model["means"])
#cv_std_results.append(model["stds"])
return cv_mean_results
def pred_output():
result = ProtDescModel()
return result
# Example call to the function
# result = pred_output()
print(datetime.now())