import torch import torch.nn as nn from torch.nn import functional as F import math class MLP(nn.Module): def __init__(self, in_feat, hid_feat=None, out_feat=None, dropout=0.): super().__init__() if not hid_feat: hid_feat = in_feat if not out_feat: out_feat = in_feat self.fc1 = nn.Linear(in_feat, hid_feat) self.act = torch.nn.ReLU() self.fc2 = nn.Linear(hid_feat,out_feat) self.droprateout = nn.Dropout(dropout) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return self.droprateout(x) class Attention_new(nn.Module): def __init__(self, dim, heads, attention_dropout=0.): super().__init__() assert dim % heads == 0 self.heads = heads self.scale = 1./dim**0.5 self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.e = nn.Linear(dim, dim) self.d_k = dim // heads self.heads = heads self.out_e = nn.Linear(dim,dim) self.out_n = nn.Linear(dim, dim) def forward(self, node, edge): b, n, c = node.shape q_embed = self.q(node).view(-1, n, self.heads, c//self.heads) k_embed = self.k(node).view(-1, n, self.heads, c//self.heads) v_embed = self.v(node).view(-1, n, self.heads, c//self.heads) e_embed = self.e(edge).view(-1, n, n, self.heads, c//self.heads) q_embed = q_embed.unsqueeze(2) k_embed = k_embed.unsqueeze(1) attn = q_embed * k_embed attn = attn/ math.sqrt(self.d_k) attn = attn * (e_embed + 1) * e_embed edge = self.out_e(attn.flatten(3)) attn = F.softmax(attn, dim=2) v_embed = v_embed.unsqueeze(1) v_embed = attn * v_embed v_embed = v_embed.sum(dim=2).flatten(2) node = self.out_n(v_embed) return node, edge class Encoder_Block(nn.Module): def __init__(self, dim, heads, act, mlp_ratio=4, drop_rate=0.): super().__init__() self.ln1 = nn.LayerNorm(dim) self.attn = Attention_new(dim, heads, drop_rate) self.ln3 = nn.LayerNorm(dim) self.ln4 = nn.LayerNorm(dim) self.mlp = MLP(dim, dim*mlp_ratio, dim, dropout=drop_rate) self.mlp2 = MLP(dim, dim*mlp_ratio, dim, dropout=drop_rate) self.ln5 = nn.LayerNorm(dim) self.ln6 = nn.LayerNorm(dim) def forward(self, x, y): x1 = self.ln1(x) x2,y1 = self.attn(x1,y) x2 = x1 + x2 y2 = y1 + y x2 = self.ln3(x2) y2 = self.ln4(y2) x = self.ln5(x2 + self.mlp(x2)) y = self.ln6(y2 + self.mlp2(y2)) return x, y class TransformerEncoder(nn.Module): def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1): super().__init__() self.Encoder_Blocks = nn.ModuleList([ Encoder_Block(dim, heads, act, mlp_ratio, drop_rate) for i in range(depth)]) def forward(self, x, y): for Encoder_Block in self.Encoder_Blocks: x, y = Encoder_Block(x,y) return x, y