import torch import torch_geometric.utils as geoutils from utils import label2onehot def generate_z_values(batch_size=32, z_dim=32, vertexes=32, b_dim=32, m_dim=32, device=None): z = torch.normal(mean=0, std=1, size=(batch_size, z_dim), device=device) # (batch,max_len) z_edge = torch.normal(mean=0, std=1, size=(batch_size, vertexes, vertexes, b_dim), device=device) # (batch,max_len,max_len) z_node = torch.normal(mean=0, std=1, size=(batch_size, vertexes, m_dim), device=device) # (batch,max_len) z = z.float().requires_grad_(True) z_edge = z_edge.float().requires_grad_(True) # Edge noise.(batch,max_len,max_len) z_node = z_node.float().requires_grad_(True) # Node noise.(batch,max_len) return z, z_edge, z_node def load_molecules(data=None, b_dim=32, m_dim=32, device=None, batch_size=32): data = data.to(device) a = geoutils.to_dense_adj( edge_index = data.edge_index, batch=data.batch, edge_attr=data.edge_attr, max_num_nodes=int(data.batch.shape[0]/batch_size) ) x_tensor = data.x.view(batch_size,int(data.batch.shape[0]/batch_size),-1) a_tensor = label2onehot(a, b_dim, device) a_tensor_vec = a_tensor.reshape(batch_size,-1) x_tensor_vec = x_tensor.reshape(batch_size,-1) real_graphs = torch.concat((x_tensor_vec,a_tensor_vec),dim=-1) return real_graphs, a_tensor, x_tensor