import torch def discriminator_loss(generator, discriminator, mol_graph, batch_size, device, grad_pen, lambda_gp, z_edge, z_node): # Compute loss with real molecules. logits_real_disc = discriminator(mol_graph) prediction_real = - torch.mean(logits_real_disc) # Compute loss with fake molecules. node, edge, node_sample, edge_sample = generator(z_edge, z_node) graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) logits_fake_disc = discriminator(graph.detach()) prediction_fake = torch.mean(logits_fake_disc) # Compute gradient loss. eps = torch.rand(mol_graph.size(0),1).to(device) x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True) grad0 = discriminator(x_int0) d_loss_gp = grad_pen(grad0, x_int0) # Calculate total loss d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp return node, edge, d_loss def generator_loss(generator, discriminator, adj, annot, batch_size): # Compute loss with fake molecules. node, edge, node_sample, edge_sample = generator(adj, annot) graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) logits_fake_disc = discriminator(graph) prediction_fake = - torch.mean(logits_fake_disc) g_loss = prediction_fake return g_loss, node, edge, node_sample, edge_sample