import torch import os import pandas as pd import random from chembl_structure_pipeline import standardizer from rdkit.Chem import MolStandardize from rdkit import Chem import time import torch import torch.nn as nn from torchtext.data import TabularDataset, Field, BucketIterator, Iterator import random import os import torch import torch.nn as nn from torch.utils.data import DataLoader import random from torch import optim import numpy as np import itertools import time import statistics from rdkit.Chem import GraphDescriptors, Lipinski, AllChem from rdkit.Chem.rdSLNParse import MolFromSLN from rdkit.Chem.rdmolfiles import MolFromSmiles import torch import torch.nn as nn import torch.optim as optim import pandas as pd import numpy as np from rdkit import rdBase, Chem import re from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') SEED = 42 random.seed(SEED) torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True ################################################################################################## ################################################################################################## # # #  THIS SCRIPT IS DIRECTLY ADAPTED FROM https://github.com/LindeSchoenmaker/SMILES-corrector # # # ################################################################################################## ################################################################################################## def is_smiles(array, TRG, reverse: bool, return_output=False, src=None, src_field=None): """Turns predicted tokens within batch into smiles and evaluates their validity Arguments: array: Tensor with most probable token for each location for each sequence in batch [trg len, batch size] TRG: target field for getting tokens from vocab reverse (bool): True if the target sequence is reversed return_output (bool): True if output sequences and their validity should be saved Returns: df: dataframe with correct and incorrect sequences valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False) smiless: list of the predicted smiles """ trg_field = TRG valids = [] smiless = [] if return_output: df = pd.DataFrame() else: df = None batch_size = array.size(1) # check if the first token should be removed, first token is zero because # outputs initaliazed to all be zeros if int((array[0, 0]).tolist()) == 0: start = 1 else: start = 0 # for each sequence in the batch for i in range(0, batch_size): # turns sequence from tensor to list skipps first row as this is not # filled in in forward sequence = (array[start:, i]).tolist() # goes from embedded to tokens trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence] # print(trg_tokens) # takes all tokens untill eos token, model would be faster if did this # one step earlier, but then changes in vocab order would disrupt. rev_tokens = list( itertools.takewhile(lambda x: x != "", trg_tokens)) if reverse: rev_tokens = rev_tokens[::-1] smiles = "".join(rev_tokens) # determine how many valid smiles are made valid = True if MolFromSmiles(smiles) else False valids.append(valid) smiless.append(smiles) if return_output: if valid: df.loc[i, "CORRECT"] = smiles else: df.loc[i, "INCORRECT"] = smiles # add the original drugex outputs to the _de dataframe if return_output and src is not None: for i in range(0, batch_size): # turns sequence from tensor to list skipps first row as this is # for src sequence = (src[1:, i]).tolist() # goes from embedded to tokens src_tokens = [src_field.vocab.itos[int(t)] for t in sequence] # takes all tokens untill eos token, model would be faster if did # this one step earlier, but then changes in vocab order would # disrupt. rev_tokens = list( itertools.takewhile(lambda x: x != "", src_tokens)) smiles = "".join(rev_tokens) df.loc[i, "ORIGINAL"] = smiles return df, valids, smiless def is_unchanged(array, TRG, reverse: bool, return_output=False, src=None, src_field=None): """Checks is output is different from input Arguments: array: Tensor with most probable token for each location for each sequence in batch [trg len, batch size] TRG: target field for getting tokens from vocab reverse (bool): True if the target sequence is reversed return_output (bool): True if output sequences and their validity should be saved Returns: df: dataframe with correct and incorrect sequences valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False) smiless: list of the predicted smiles """ trg_field = TRG sources = [] batch_size = array.size(1) unchanged = 0 # check if the first token should be removed, first token is zero because # outputs initaliazed to all be zeros if int((array[0, 0]).tolist()) == 0: start = 1 else: start = 0 for i in range(0, batch_size): # turns sequence from tensor to list skipps first row as this is # for src sequence = (src[1:, i]).tolist() # goes from embedded to tokens src_tokens = [src_field.vocab.itos[int(t)] for t in sequence] # takes all tokens untill eos token, model would be faster if did this # one step earlier, but then changes in vocab order would disrupt. rev_tokens = list( itertools.takewhile(lambda x: x != "", src_tokens)) smiles = "".join(rev_tokens) sources.append(smiles) # for each sequence in the batch for i in range(0, batch_size): # turns sequence from tensor to list skipps first row as this is not # filled in in forward sequence = (array[start:, i]).tolist() # goes from embedded to tokens trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence] # print(trg_tokens) # takes all tokens untill eos token, model would be faster if did this # one step earlier, but then changes in vocab order would disrupt. rev_tokens = list( itertools.takewhile(lambda x: x != "", trg_tokens)) if reverse: rev_tokens = rev_tokens[::-1] smiles = "".join(rev_tokens) # determine how many valid smiles are made valid = True if MolFromSmiles(smiles) else False if not valid: if smiles == sources[i]: unchanged += 1 return unchanged def molecule_reconstruction(array, TRG, reverse: bool, outputs): """Turns target tokens within batch into smiles and compares them to predicted output smiles Arguments: array: Tensor with target's token for each location for each sequence in batch [trg len, batch size] TRG: target field for getting tokens from vocab reverse (bool): True if the target sequence is reversed outputs: list of predicted SMILES sequences Returns: matches(int): number of total right molecules """ trg_field = TRG matches = 0 targets = [] batch_size = array.size(1) # for each sequence in the batch for i in range(0, batch_size): # turns sequence from tensor to list skipps first row as this is not # filled in in forward sequence = (array[1:, i]).tolist() # goes from embedded to tokens trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence] # takes all tokens untill eos token, model would be faster if did this # one step earlier, but then changes in vocab order would disrupt. rev_tokens = list( itertools.takewhile(lambda x: x != "", trg_tokens)) if reverse: rev_tokens = rev_tokens[::-1] smiles = "".join(rev_tokens) targets.append(smiles) for i in range(0, batch_size): m = MolFromSmiles(targets[i]) p = MolFromSmiles(outputs[i]) if p is not None: if m.HasSubstructMatch(p) and p.HasSubstructMatch(m): matches += 1 return matches def complexity_whitlock(mol: Chem.Mol, includeAllDescs=False): """ Complexity as defined in DOI:10.1021/jo9814546 S: complexity = 4*#rings + 2*#unsat + #hetatm + 2*#chiral Other descriptors: H: size = #bonds (Hydrogen atoms included) G: S + H Ratio: S / H """ mol_ = Chem.Mol(mol) nrings = Lipinski.RingCount(mol_) - Lipinski.NumAromaticRings(mol_) Chem.rdmolops.SetAromaticity(mol_) unsat = sum(1 for bond in mol_.GetBonds() if bond.GetBondTypeAsDouble() == 2) hetatm = len(mol_.GetSubstructMatches(Chem.MolFromSmarts("[!#6]"))) AllChem.EmbedMolecule(mol_) Chem.AssignAtomChiralTagsFromStructure(mol_) chiral = len(Chem.FindMolChiralCenters(mol_)) S = 4 * nrings + 2 * unsat + hetatm + 2 * chiral if not includeAllDescs: return S Chem.rdmolops.Kekulize(mol_) mol_ = Chem.AddHs(mol_) H = sum(bond.GetBondTypeAsDouble() for bond in mol_.GetBonds()) G = S + H R = S / H return {"WhitlockS": S, "WhitlockH": H, "WhitlockG": G, "WhitlockRatio": R} def complexity_baronechanon(mol: Chem.Mol): """ Complexity as defined in DOI:10.1021/ci000145p """ mol_ = Chem.Mol(mol) Chem.Kekulize(mol_) Chem.RemoveStereochemistry(mol_) mol_ = Chem.RemoveHs(mol_, updateExplicitCount=True) degree, counts = 0, 0 for atom in mol_.GetAtoms(): degree += 3 * 2**(atom.GetExplicitValence() - atom.GetNumExplicitHs() - 1) counts += 3 if atom.GetSymbol() == "C" else 6 ringterm = sum(map(lambda x: 6 * len(x), mol_.GetRingInfo().AtomRings())) return degree + counts + ringterm def calc_complexity(array, TRG, reverse, valids, complexity_function=GraphDescriptors.BertzCT): """Calculates the complexity of inputs that are not correct. Arguments: array: Tensor with target's token for each location for each sequence in batch [trg len, batch size] TRG: target field for getting tokens from vocab reverse (bool): True if the target sequence is reversed valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False) complexity_function: the type of complexity measure that will be used GraphDescriptors.BertzCT complexity_whitlock complexity_baronechanon Returns: matches(int): mean of complexity values """ trg_field = TRG sources = [] complexities = [] loc = torch.BoolTensor(valids) # only keeps rows in batch size dimension where valid is false array = array[:, loc == False] # should check if this still works # array = torch.transpose(array, 0, 1) array_size = array.size(1) for i in range(0, array_size): # turns sequence from tensor to list skipps first row as this is not # filled in in forward sequence = (array[1:, i]).tolist() # goes from embedded to tokens trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence] # takes all tokens untill eos token, model would be faster if did this # one step earlier, but then changes in vocab order would disrupt. rev_tokens = list( itertools.takewhile(lambda x: x != "", trg_tokens)) if reverse: rev_tokens = rev_tokens[::-1] smiles = "".join(rev_tokens) sources.append(smiles) for source in sources: try: m = MolFromSmiles(source) except BaseException: m = MolFromSLN(source) complexities.append(complexity_function(m)) if len(complexities) > 0: mean = statistics.mean(complexities) else: mean = 0 return mean def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs class Convo: """Class for training and evaluating transformer and convolutional neural network Methods ------- train_model() train model for initialized number of epochs evaluate(return_output) use model with validation loader (& optionally drugex loader) to get test loss & other metrics translate(loader) translate inputs from loader (different from evaluate in that no target sequence is used) """ def train_model(self): optimizer = optim.Adam(self.parameters(), lr=self.lr) log = open(f"{self.out}.log", "a") best_error = np.inf for epoch in range(self.epochs): self.train() start_time = time.time() loss_train = 0 for i, batch in enumerate(self.loader_train): optimizer.zero_grad() # changed src,trg call to match with bentrevett # src, trg = batch['src'], batch['trg'] trg = batch.trg src = batch.src output, attention = self(src, trg[:, :-1]) # feed the source and target into def forward to get the output # Xuhan uses forward for this, with istrain = true output_dim = output.shape[-1] # changed output = output.contiguous().view(-1, output_dim) trg = trg[:, 1:].contiguous().view(-1) # output = output[:,:,0]#.view(-1) # output = output[1:].view(-1, output.shape[-1]) # trg = trg[1:].view(-1) loss = nn.CrossEntropyLoss( ignore_index=self.TRG.vocab.stoi[self.TRG.pad_token]) a, b = output.view(-1), trg.to(self.device).view(-1) # changed # loss = loss(output.view(0), trg.view(0).to(device)) loss = loss(output, trg) loss.backward() torch.nn.utils.clip_grad_norm_(self.parameters(), self.clip) optimizer.step() loss_train += loss.item() # turned off for now, as not using voc so won't work, output is a tensor # output = [(trg len - 1) * batch size, output dim] # smiles, valid = is_valid_smiles(output, reversed) # if valid: # valids += 1 # smiless.append(smiles) # added .dataset becaue len(iterator) gives len(self.dataset) / # self.batch_size) loss_train /= len(self.loader_train) info = f"Epoch: {epoch+1:02} step: {i} loss_train: {loss_train:.4g}" # model is used to generate trg based on src from the validation set to assess performance # similar to Xuhan, although he doesn't use the if loop if self.loader_valid is not None: return_output = False if epoch + 1 == self.epochs: return_output = True ( valids, loss_valid, valids_de, df_output, df_output_de, right_molecules, complexity, unchanged, unchanged_de, ) = self.evaluate(return_output) reconstruction_error = 1 - right_molecules / len( self.loader_valid.dataset) error = 1 - valids / len(self.loader_valid.dataset) complexity = complexity / len(self.loader_valid) unchan = unchanged / (len(self.loader_valid.dataset) - valids) info += f" loss_valid: {loss_valid:.4g} error_rate: {error:.4g} molecule_reconstruction_error_rate: {reconstruction_error:.4g} unchanged: {unchan:.4g} invalid_target_complexity: {complexity:.4g}" if self.loader_drugex is not None: error_de = 1 - valids_de / len(self.loader_drugex.dataset) unchan_de = unchanged_de / ( len(self.loader_drugex.dataset) - valids_de) info += f" error_rate_drugex: {error_de:.4g} unchanged_drugex: {unchan_de:.4g}" if reconstruction_error < best_error: torch.save(self.state_dict(), f"{self.out}.pkg") best_error = reconstruction_error last_save = epoch else: if epoch - last_save >= 10 and best_error != 1: torch.save(self.state_dict(), f"{self.out}_last.pkg") ( valids, loss_valid, valids_de, df_output, df_output_de, right_molecules, complexity, unchanged, unchanged_de, ) = self.evaluate(True) end_time = time.time() epoch_mins, epoch_secs = epoch_time( start_time, end_time) info += f" Time: {epoch_mins}m {epoch_secs}s" break elif error < best_error: torch.save(self.state_dict(), f"{self.out}.pkg") best_error = error end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) info += f" Time: {epoch_mins}m {epoch_secs}s" torch.save(self.state_dict(), f"{self.out}_last.pkg") log.close() self.load_state_dict(torch.load(f"{self.out}.pkg")) df_output.to_csv(f"{self.out}.csv", index=False) df_output_de.to_csv(f"{self.out}_de.csv", index=False) def evaluate(self, return_output): self.eval() test_loss = 0 df_output = pd.DataFrame() df_output_de = pd.DataFrame() valids = 0 valids_de = 0 unchanged = 0 unchanged_de = 0 right_molecules = 0 complexity = 0 with torch.no_grad(): for _, batch in enumerate(self.loader_valid): trg = batch.trg src = batch.src output, attention = self.forward(src, trg[:, :-1]) pred_token = output.argmax(2) array = torch.transpose(pred_token, 0, 1) trg_trans = torch.transpose(trg, 0, 1) output_dim = output.shape[-1] output = output.contiguous().view(-1, output_dim) trg = trg[:, 1:].contiguous().view(-1) src_trans = torch.transpose(src, 0, 1) df_batch, valid, smiless = is_smiles( array, self.TRG, reverse=True, return_output=return_output) unchanged += is_unchanged( array, self.TRG, reverse=True, return_output=return_output, src=src_trans, src_field=self.SRC, ) matches = molecule_reconstruction(trg_trans, self.TRG, reverse=True, outputs=smiless) complexity += calc_complexity(trg_trans, self.TRG, reverse=True, valids=valid) if df_batch is not None: df_output = pd.concat([df_output, df_batch], ignore_index=True) right_molecules += matches valids += sum(valid) # trg = trg[1:].view(-1) # output, trg = output[1:].view(-1, output.shape[-1]), trg[1:].view(-1) loss = nn.CrossEntropyLoss( ignore_index=self.TRG.vocab.stoi[self.TRG.pad_token]) loss = loss(output, trg) test_loss += loss.item() if self.loader_drugex is not None: for _, batch in enumerate(self.loader_drugex): src = batch.src output = self.translate_sentence(src, self.TRG, self.device) # checks the number of valid smiles pred_token = output.argmax(2) array = torch.transpose(pred_token, 0, 1) src_trans = torch.transpose(src, 0, 1) df_batch, valid, smiless = is_smiles( array, self.TRG, reverse=True, return_output=return_output, src=src_trans, src_field=self.SRC, ) unchanged_de += is_unchanged( array, self.TRG, reverse=True, return_output=return_output, src=src_trans, src_field=self.SRC, ) if df_batch is not None: df_output_de = pd.concat([df_output_de, df_batch], ignore_index=True) valids_de += sum(valid) return ( valids, test_loss / len(self.loader_valid), valids_de, df_output, df_output_de, right_molecules, complexity, unchanged, unchanged_de, ) def translate(self, loader): self.eval() df_output_de = pd.DataFrame() valids_de = 0 with torch.no_grad(): for _, batch in enumerate(loader): src = batch.src output = self.translate_sentence(src, self.TRG, self.device) # checks the number of valid smiles pred_token = output.argmax(2) array = torch.transpose(pred_token, 0, 1) src_trans = torch.transpose(src, 0, 1) df_batch, valid, smiless = is_smiles( array, self.TRG, reverse=True, return_output=True, src=src_trans, src_field=self.SRC, ) if df_batch is not None: df_output_de = pd.concat([df_output_de, df_batch], ignore_index=True) valids_de += sum(valid) return valids_de, df_output_de class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, max_length, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(max_length, hid_dim) self.layers = nn.ModuleList([ EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers) ]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src = [batch size, src len] # src_mask = [batch size, src len] batch_size = src.shape[0] src_len = src.shape[1] pos = (torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)) # pos = [batch size, src len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) # src = [batch size, src len, hid dim] for layer in self.layers: src = layer(src, src_mask) # src = [batch size, src len, hid dim] return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer( hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): # src = [batch size, src len, hid dim] # src_mask = [batch size, src len] # self attention _src, _ = self.self_attention(src, src, src, src_mask) # dropout, residual connection and layer norm src = self.self_attn_layer_norm(src + self.dropout(_src)) # src = [batch size, src len, hid dim] # positionwise feedforward _src = self.positionwise_feedforward(src) # dropout, residual and layer norm src = self.ff_layer_norm(src + self.dropout(_src)) # src = [batch size, src len, hid dim] return src class MultiHeadAttentionLayer(nn.Module): def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device) def forward(self, query, key, value, mask=None): batch_size = query.shape[0] # query = [batch size, query len, hid dim] # key = [batch size, key len, hid dim] # value = [batch size, value len, hid dim] Q = self.fc_q(query) K = self.fc_k(key) V = self.fc_v(value) # Q = [batch size, query len, hid dim] # K = [batch size, key len, hid dim] # V = [batch size, value len, hid dim] Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) # Q = [batch size, n heads, query len, head dim] # K = [batch size, n heads, key len, head dim] # V = [batch size, n heads, value len, head dim] energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale # energy = [batch size, n heads, query len, key len] if mask is not None: energy = energy.masked_fill(mask == 0, -1e10) attention = torch.softmax(energy, dim=-1) # attention = [batch size, n heads, query len, key len] x = torch.matmul(self.dropout(attention), V) # x = [batch size, n heads, query len, head dim] x = x.permute(0, 2, 1, 3).contiguous() # x = [batch size, query len, n heads, head dim] x = x.view(batch_size, -1, self.hid_dim) # x = [batch size, query len, hid dim] x = self.fc_o(x) # x = [batch size, query len, hid dim] return x, attention class PositionwiseFeedforwardLayer(nn.Module): def __init__(self, hid_dim, pf_dim, dropout): super().__init__() self.fc_1 = nn.Linear(hid_dim, pf_dim) self.fc_2 = nn.Linear(pf_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # x = [batch size, seq len, hid dim] x = self.dropout(torch.relu(self.fc_1(x))) # x = [batch size, seq len, pf dim] x = self.fc_2(x) # x = [batch size, seq len, hid dim] return x class Decoder(nn.Module): def __init__( self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, max_length, device, ): super().__init__() self.device = device self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(max_length, hid_dim) self.layers = nn.ModuleList([ DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers) ]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, trg, enc_src, trg_mask, src_mask): # trg = [batch size, trg len] # enc_src = [batch size, src len, hid dim] # trg_mask = [batch size, trg len] # src_mask = [batch size, src len] batch_size = trg.shape[0] trg_len = trg.shape[1] pos = (torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)) # pos = [batch size, trg len] trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos)) # trg = [batch size, trg len, hid dim] for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) # trg = [batch size, trg len, hid dim] # attention = [batch size, n heads, trg len, src len] output = self.fc_out(trg) # output = [batch size, trg len, output dim] return output, attention class DecoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.enc_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.encoder_attention = MultiHeadAttentionLayer( hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer( hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): # trg = [batch size, trg len, hid dim] # enc_src = [batch size, src len, hid dim] # trg_mask = [batch size, trg len] # src_mask = [batch size, src len] # self attention _trg, _ = self.self_attention(trg, trg, trg, trg_mask) # dropout, residual connection and layer norm trg = self.self_attn_layer_norm(trg + self.dropout(_trg)) # trg = [batch size, trg len, hid dim] # encoder attention _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask) # dropout, residual connection and layer norm trg = self.enc_attn_layer_norm(trg + self.dropout(_trg)) # trg = [batch size, trg len, hid dim] # positionwise feedforward _trg = self.positionwise_feedforward(trg) # dropout, residual and layer norm trg = self.ff_layer_norm(trg + self.dropout(_trg)) # trg = [batch size, trg len, hid dim] # attention = [batch size, n heads, trg len, src len] return trg, attention class Seq2Seq(nn.Module, Convo): def __init__( self, encoder, decoder, src_pad_idx, trg_pad_idx, device, loader_train: DataLoader, out: str, loader_valid=None, loader_drugex=None, epochs=100, lr=0.0005, clip=0.1, reverse=True, TRG=None, SRC=None, ): super().__init__() self.encoder = encoder self.decoder = decoder self.src_pad_idx = src_pad_idx self.trg_pad_idx = trg_pad_idx self.device = device self.loader_train = loader_train self.out = out self.loader_valid = loader_valid self.loader_drugex = loader_drugex self.epochs = epochs self.lr = lr self.clip = clip self.reverse = reverse self.TRG = TRG self.SRC = SRC def make_src_mask(self, src): # src = [batch size, src len] src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) # src_mask = [batch size, 1, 1, src len] return src_mask def make_trg_mask(self, trg): # trg = [batch size, trg len] trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2) # trg_pad_mask = [batch size, 1, 1, trg len] trg_len = trg.shape[1] trg_sub_mask = torch.tril( torch.ones((trg_len, trg_len), device=self.device)).bool() # trg_sub_mask = [trg len, trg len] trg_mask = trg_pad_mask & trg_sub_mask # trg_mask = [batch size, 1, trg len, trg len] return trg_mask def forward(self, src, trg): # src = [batch size, src len] # trg = [batch size, trg len] src_mask = self.make_src_mask(src) trg_mask = self.make_trg_mask(trg) # src_mask = [batch size, 1, 1, src len] # trg_mask = [batch size, 1, trg len, trg len] enc_src = self.encoder(src, src_mask) # enc_src = [batch size, src len, hid dim] output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) # output = [batch size, trg len, output dim] # attention = [batch size, n heads, trg len, src len] return output, attention def translate_sentence(self, src, trg_field, device, max_len=202): self.eval() src_mask = self.make_src_mask(src) with torch.no_grad(): enc_src = self.encoder(src, src_mask) trg_indexes = [trg_field.vocab.stoi[trg_field.init_token]] batch_size = src.shape[0] trg = torch.LongTensor(trg_indexes).unsqueeze(0).to(device) trg = trg.repeat(batch_size, 1) for i in range(max_len): # turned model into self. trg_mask = self.make_trg_mask(trg) with torch.no_grad(): output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) pred_tokens = output.argmax(2)[:, -1].unsqueeze(1) trg = torch.cat((trg, pred_tokens), 1) return output def remove_floats(df: pd.DataFrame, subset: str): """Preprocessing step to remove any entries that are not strings""" df_subset = df[subset] df[subset] = df[subset].astype(str) # only keep entries that stayed the same after applying astype str df = df[df[subset] == df_subset].copy() return df def smi_tokenizer(smi: str, reverse=False) -> list: """ Tokenize a SMILES molecule """ pattern = r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" regex = re.compile(pattern) # tokens = [''] + [token for token in regex.findall(smi)] + [''] tokens = [token for token in regex.findall(smi)] # assert smi == ''.join(tokens[1:-1]) assert smi == "".join(tokens[:]) # try: # assert smi == "".join(tokens[:]) # except: # print(smi) # print("".join(tokens[:])) if reverse: return tokens[::-1] return tokens def init_weights(m: nn.Module): if hasattr(m, "weight") and m.weight.dim() > 1: nn.init.xavier_uniform_(m.weight.data) def count_parameters(model: nn.Module): return sum(p.numel() for p in model.parameters() if p.requires_grad) def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs def initialize_model(folder_out: str, data_source: str, error_source: str, device: torch.device, threshold: int, epochs: int, layers: int = 3, batch_size: int = 16, invalid_type: str = "all", num_errors: int = 1, validation_step=False): """Create encoder decoder models for specified model (currently only translator) & type of invalid SMILES param data: collection of invalid, valid SMILES pairs param invalid_smiles_path: path to previously generated invalid SMILES param invalid_type: type of errors introduced into invalid SMILES return: """ # set fields SRC = Field( tokenize=lambda x: smi_tokenizer(x), init_token="", eos_token="", batch_first=True, ) TRG = Field( tokenize=lambda x: smi_tokenizer(x, reverse=True), init_token="", eos_token="", batch_first=True, ) if validation_step: train, val = TabularDataset.splits( path=f'{folder_out}errors/split/', train=f"{data_source}_{invalid_type}_{num_errors}_errors_train.csv", validation= f"{data_source}_{invalid_type}_{num_errors}_errors_dev.csv", format="CSV", skip_header=False, fields={ "ERROR": ("src", SRC), "STD_SMILES": ("trg", TRG) }, ) SRC.build_vocab(train, val, max_size=1000) TRG.build_vocab(train, val, max_size=1000) else: train = TabularDataset( path= f'{folder_out}{data_source}_{invalid_type}_{num_errors}_errors.csv', format="CSV", skip_header=False, fields={ "ERROR": ("src", SRC), "STD_SMILES": ("trg", TRG) }, ) SRC.build_vocab(train, max_size=1000) TRG.build_vocab(train, max_size=1000) drugex = TabularDataset( path=error_source, format="csv", skip_header=False, fields={ "SMILES": ("src", SRC), "SMILES_TARGET": ("trg", TRG) }, ) #SRC.vocab = torch.load('vocab_src.pth') #TRG.vocab = torch.load('vocab_trg.pth') # model parameters EPOCHS = epochs BATCH_SIZE = batch_size INPUT_DIM = len(SRC.vocab) OUTPUT_DIM = len(TRG.vocab) HID_DIM = 256 ENC_LAYERS = layers DEC_LAYERS = layers ENC_HEADS = 8 DEC_HEADS = 8 ENC_PF_DIM = 512 DEC_PF_DIM = 512 ENC_DROPOUT = 0.1 DEC_DROPOUT = 0.1 SRC_PAD_IDX = SRC.vocab.stoi[SRC.pad_token] TRG_PAD_IDX = TRG.vocab.stoi[TRG.pad_token] # add 2 to length for start and stop tokens MAX_LENGTH = threshold + 2 # model name MODEL_OUT_FOLDER = f"{folder_out}" MODEL_NAME = "transformer_%s_%s_%s_%s_%s" % ( invalid_type, num_errors, data_source, BATCH_SIZE, layers) if not os.path.exists(MODEL_OUT_FOLDER): os.mkdir(MODEL_OUT_FOLDER) out = os.path.join(MODEL_OUT_FOLDER, MODEL_NAME) torch.save(SRC.vocab, f'{out}_vocab_src.pth') torch.save(TRG.vocab, f'{out}_vocab_trg.pth') # iterator is a dataloader # iterator to pass to the same length and create batches in which the # amount of padding is minimized if validation_step: train_iter, val_iter = BucketIterator.splits( (train, val), batch_sizes=(BATCH_SIZE, 256), sort_within_batch=True, shuffle=True, # the BucketIterator needs to be told what function it should use to # group the data. sort_key=lambda x: len(x.src), device=device, ) else: train_iter = BucketIterator( train, batch_size=BATCH_SIZE, sort_within_batch=True, shuffle=True, # the BucketIterator needs to be told what function it should use to # group the data. sort_key=lambda x: len(x.src), device=device, ) val_iter = None drugex_iter = Iterator( drugex, batch_size=64, device=device, sort=False, sort_within_batch=True, sort_key=lambda x: len(x.src), repeat=False, ) # model initialization enc = Encoder( INPUT_DIM, HID_DIM, ENC_LAYERS, ENC_HEADS, ENC_PF_DIM, ENC_DROPOUT, MAX_LENGTH, device, ) dec = Decoder( OUTPUT_DIM, HID_DIM, DEC_LAYERS, DEC_HEADS, DEC_PF_DIM, DEC_DROPOUT, MAX_LENGTH, device, ) model = Seq2Seq( enc, dec, SRC_PAD_IDX, TRG_PAD_IDX, device, train_iter, out=out, loader_valid=val_iter, loader_drugex=drugex_iter, epochs=EPOCHS, TRG=TRG, SRC=SRC, ).to(device) return model, out, SRC def train_model(model, out, assess): """Apply given weights (& assess performance or train further) or start training new model Args: model: initialized model out: .pkg file with model parameters asses: bool Returns: model with (new) weights """ if os.path.exists(f"{out}.pkg") and assess: model.load_state_dict(torch.load(f=out + ".pkg")) ( valids, loss_valid, valids_de, df_output, df_output_de, right_molecules, complexity, unchanged, unchanged_de, ) = model.evaluate(True) # log = open('unchanged.log', 'a') # info = f'type: comb unchanged: {unchan:.4g} unchanged_drugex: {unchan_de:.4g}' # print(info, file=log, flush = True) # print(valids_de) # print(unchanged_de) # print(unchan) # print(unchan_de) # df_output_de.to_csv(f'{out}_de_new.csv', index = False) # error_de = 1 - valids_de / len(drugex_iter.dataset) # print(error_de) # df_output.to_csv(f'{out}_par.csv', index = False) elif os.path.exists(f"{out}.pkg"): # starts from the model after the last epoch, not the best epoch model.load_state_dict(torch.load(f=out + "_last.pkg")) # need to change how log file names epochs model.train_model() else: model = model.apply(init_weights) model.train_model() return model def correct_SMILES(model, out, error_source, device, SRC): """Model that is given corrects SMILES and return number of correct ouputs and dataframe containing all outputs Args: model: initialized model out: .pkg file with model parameters asses: bool Returns: valids: number of fixed outputs df_output: dataframe containing output (either correct or incorrect) & original input """ ## account for tokens that are not yet in SRC without changing existing SRC token embeddings errors = TabularDataset( path=error_source, format="csv", skip_header=False, fields={"SMILES": ("src", SRC)}, ) errors_loader = Iterator( errors, batch_size=64, device=device, sort=False, sort_within_batch=True, sort_key=lambda x: len(x.src), repeat=False, ) model.load_state_dict(torch.load(f=out + ".pkg",map_location=torch.device('cpu'))) # add option to use different iterator maybe? valids, df_output = model.translate(errors_loader) #df_output.to_csv(f"{error_source}_fixed.csv", index=False) return valids, df_output class smi_correct(object): def __init__(self, model_name, trans_file_path): # set random seed, used for error generation & initiation transformer self.SEED = 42 random.seed(self.SEED) self.model_name = model_name self.folder_out = "data/" self.trans_file_path = trans_file_path if not os.path.exists(self.folder_out): os.makedirs(self.folder_out) self.invalid_type = 'multiple' self.num_errors = 12 self.threshold = 200 self.data_source = f"PAPYRUS_{self.threshold}" os.environ["CUDA_VISIBLE_DEVICES"] = "0" self.initialize_source = 'data/papyrus_rnn_S.csv' # change this path def standardization_pipeline(self, smile): desalter = MolStandardize.fragment.LargestFragmentChooser() std_smile = None if not isinstance(smile, str): return None m = Chem.MolFromSmiles(smile) # skips smiles for which no mol file could be generated if m is not None: # standardizes std_m = standardizer.standardize_mol(m) # strips salts std_m_p, exclude = standardizer.get_parent_mol(std_m) if not exclude: # choose largest fragment for rare cases where chembl structure # pipeline leaves 2 fragments std_m_p_d = desalter.choose(std_m_p) std_smile = Chem.MolToSmiles(std_m_p_d) return std_smile def remove_smiles_duplicates(self, dataframe: pd.DataFrame, subset: str) -> pd.DataFrame: return dataframe.drop_duplicates(subset=subset) def correct(self, smi): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model, out, SRC = initialize_model(self.folder_out, self.data_source, error_source=self.initialize_source, device=device, threshold=self.threshold, epochs=30, layers=3, batch_size=16, invalid_type=self.invalid_type, num_errors=self.num_errors) valids, df_output = correct_SMILES(model, out, smi, device, SRC) df_output["SMILES"] = df_output.apply(lambda row: self.standardization_pipeline(row["CORRECT"]), axis=1) df_output = self.remove_smiles_duplicates(df_output, subset="SMILES") # List of columns to drop columns_to_drop = ["CORRECT", "ORIGINAL"] # Check if "INCORRECT" column exists and add it to the list if "INCORRECT" in df_output.columns: columns_to_drop.append("INCORRECT") # Drop the specified columns df_output = df_output.drop(columns=columns_to_drop).dropna() return df_output