import torch def discriminator_loss(generator, discriminator, drug_edge, drug_node, batch_size, device, grad_pen, lambda_gp, z_edge, z_node, submodel): # Compute loss with real molecules. if submodel == "DrugGEN": logits_real_disc = discriminator(drug_edge, drug_node) else: logits_real_disc = discriminator(drug_node) prediction_real = - torch.mean(logits_real_disc) # Compute loss with fake molecules. node, edge, node_sample, edge_sample = generator(z_edge, z_node) if submodel == "DrugGEN": logits_fake_disc = discriminator(edge_sample, node_sample) else: graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) logits_fake_disc = discriminator(graph.detach()) prediction_fake = torch.mean(logits_fake_disc) # Compute gradient penalty. eps_edge = torch.rand(batch_size, 1, 1, 1, device=device) # Shape adapted for broadcasting with edges and nodes eps_node = torch.rand(batch_size, 1, 1, device=device) # Shape adapted for broadcasting with edges and nodes int_node = eps_node * drug_node + (1 - eps_node) * node_sample int_edge = eps_edge * drug_edge + (1 - eps_edge) * edge_sample int_node.requires_grad_(True) int_edge.requires_grad_(True) # Compute discriminator output for interpolated samples if submodel == "DrugGEN": logits_interpolated = discriminator(int_edge, int_node) else: graph = torch.cat((int_node.view(batch_size, -1), int_edge.view(batch_size, -1)), dim=-1) logits_interpolated = discriminator(graph) # Compute gradient penalty for nodes and edges grad_penalty = grad_pen(logits_interpolated, int_node) # Calculate total discriminator loss d_loss = prediction_fake + prediction_real + lambda_gp * grad_penalty return node, edge, d_loss def generator_loss(generator, discriminator, adj, annot, batch_size, submodel): # Compute loss with fake molecules. node, edge, node_sample, edge_sample = generator(adj, annot) if submodel == "DrugGEN": logits_fake_disc = discriminator(edge_sample, node_sample) else: graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) logits_fake_disc = discriminator(graph) prediction_fake = - torch.mean(logits_fake_disc) g_loss = prediction_fake return g_loss, node, edge, node_sample, edge_sample