from collections import Counter import pandas as pd def add_domains(data, path_to_domains): domains = pd.read_csv(path_to_domains, delimiter=' ') data = data.merge(domains, right_on='proteinID', left_on='uniprotID', how='left') data = data.drop(['proteinID'], axis=1) # Label each data point as range or notRange based on the relative distance of mutation and domain boundaries. data = data.astype('str') data.domStart = data.domStart.astype('float') data.domEnd = data.domEnd.astype('float') for i in data.index: if data.at[i, 'domain'] != 'nan': if int(data.at[i, 'domStart']) <= int(data.at[i, 'pos']) <= int(data.at[i, 'domEnd']): data.at[i, 'distance'] = 0 else: distance = min(abs(int(data.at[i, 'domStart']) - int(data.at[i, 'pos'])), abs(int(data.at[i, 'domEnd']) - int(data.at[i, 'pos']))) data.at[i, 'distance'] = int(distance) else: data.at[i, 'distance'] = 'nan' data = data.sort_values(by=['datapoint', 'distance']).reset_index(drop=True) # Distances will be sorted. # Keep the one with the least distance. But we may have more than one range domains for a datapoint if distance = 0. # For this reason first we need to separate range ones so that when we take the first occurance to get the closest one # for non range ones, other distance=0 ones wont disappear. data_range = data[data.distance == 0] data_out_range = data[data.distance != 0] # For the range ones, find the most occurance dom = [] for i in data_range.index: dom.append(data_range.at[i, 'domain']) domainCount = Counter(dom) # Occurance of domains. # For out of range ones, take the closest distance. data_out_range = data_out_range.drop_duplicates(['datapoint'], keep='first') # Already sorted above. domain_counts = pd.DataFrame(domainCount.items(), columns=['domain', 'count']) data_range_counts = data_range.merge(domain_counts, on='domain') data_range_counts = data_range_counts.sort_values(['datapoint', 'count']) data_range_counts = data_range_counts.drop_duplicates(['datapoint'], keep='last') # Take with the higher count. data_range_counts = data_range_counts.drop(['count'], axis=1) # Merge them back together frames = [data_range_counts, data_out_range] data = pd.concat(frames, sort=False) # Here when you concat two data frames, we might have range and not range with # min distance for the same data point. Delete the one coming from notRange one. data = data.sort_values(['datapoint', 'distance']).reset_index(drop=True) data = data.drop_duplicates(['datapoint'], keep='first') data = data.astype(str) return data