import torch import os from torchvision.models import resnet50, ResNet50_Weights def download_pretrained_model(): try: # Load ResNet50 model with the best available weights print("Downloading ResNet50 model with ImageNet-1K weights...") model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) model.eval() # Save the model with safe loading print("Saving model to best_model.pth...") torch.save(model.state_dict(), 'best_model.pth', _use_new_zipfile_serialization=True) # Verify the file exists if os.path.exists('best_model.pth'): model_size = os.path.getsize('best_model.pth') / (1024 * 1024) # Size in MB print(f"Model saved successfully! Size: {model_size:.2f} MB") else: print("Error: Model file was not created") except Exception as e: print(f"An error occurred: {str(e)}") if __name__ == "__main__": download_pretrained_model()