Spaces:
Running
Running
fix
Browse files- analyzer/ASR_en_us.py +53 -18
- analyzer/ASR_en_us_v2.py +17 -52
analyzer/ASR_en_us.py
CHANGED
|
@@ -1,23 +1,50 @@
|
|
| 1 |
import torch
|
| 2 |
import soundfile as sf
|
| 3 |
import librosa
|
| 4 |
-
|
|
|
|
| 5 |
import os
|
| 6 |
from phonemizer import phonemize
|
| 7 |
import numpy as np
|
| 8 |
from datetime import datetime, timezone
|
| 9 |
|
| 10 |
-
# ---
|
| 11 |
-
# 移除了全域的 processor 和 model
|
| 12 |
-
|
| 13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
-
print(f"INFO:
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
MULTI_CHAR_PHONEMES = {
|
| 18 |
-
'tʃ', 'dʒ',
|
| 19 |
-
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ',
|
| 20 |
-
'ɪə', 'eə', 'ʊə', 'ər'
|
| 21 |
}
|
| 22 |
|
| 23 |
def _tokenize_ipa(ipa_string: str) -> list:
|
|
@@ -36,8 +63,7 @@ def _tokenize_ipa(ipa_string: str) -> list:
|
|
| 36 |
i += 1
|
| 37 |
return phonemes
|
| 38 |
|
| 39 |
-
# --- 3. 核心分析函數 (主入口) (
|
| 40 |
-
# 刪除了舊的 load_model() 函數,並將其邏輯合併至此。
|
| 41 |
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
|
| 42 |
"""
|
| 43 |
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
|
|
@@ -45,11 +71,12 @@ def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dic
|
|
| 45 |
"""
|
| 46 |
# 檢查快取中是否已有模型,如果沒有則載入
|
| 47 |
if "model" not in cache:
|
| 48 |
-
print(f"快取未命中 (
|
| 49 |
try:
|
|
|
|
| 50 |
# 載入模型並存入此函數的快取字典
|
| 51 |
-
cache["processor"] =
|
| 52 |
-
cache["model"] =
|
| 53 |
cache["model"].to(DEVICE)
|
| 54 |
print(f"模型 '{MODEL_NAME}' 已載入並快取。")
|
| 55 |
except Exception as e:
|
|
@@ -81,14 +108,21 @@ def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dic
|
|
| 81 |
with torch.no_grad():
|
| 82 |
logits = model(input_values).logits
|
| 83 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 87 |
|
| 88 |
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 89 |
|
| 90 |
|
| 91 |
-
# --- 4. 對齊函數 (
|
|
|
|
| 92 |
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 93 |
"""
|
| 94 |
(已修改) 使用新的切分邏輯執行音素對齊。
|
|
@@ -143,7 +177,8 @@ def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized
|
|
| 143 |
|
| 144 |
return alignments_by_word
|
| 145 |
|
| 146 |
-
# --- 5. 格式化函數 (
|
|
|
|
| 147 |
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 148 |
total_phonemes = 0
|
| 149 |
total_errors = 0
|
|
@@ -218,4 +253,4 @@ def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
|
| 218 |
"words": words_data
|
| 219 |
}
|
| 220 |
|
| 221 |
-
return final_result
|
|
|
|
| 1 |
import torch
|
| 2 |
import soundfile as sf
|
| 3 |
import librosa
|
| 4 |
+
# 【【【【【 修改 #1:從 transformers 匯入 AutoProcessor 和 AutoModelForCTC 】】】】】
|
| 5 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
| 6 |
import os
|
| 7 |
from phonemizer import phonemize
|
| 8 |
import numpy as np
|
| 9 |
from datetime import datetime, timezone
|
| 10 |
|
| 11 |
+
# --- 全域設定 (已修改) ---
|
| 12 |
+
# 移除了全域的 processor 和 model 變數。
|
| 13 |
+
# 刪除了舊的 load_model() 函數。
|
| 14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
print(f"INFO: ASR_en_us_v2.py is configured to use device: {DEVICE}")
|
| 16 |
+
|
| 17 |
+
# 【【【【【 修改 #2:更新為最終選定的 KoelLabs 模型名稱 】】】】】
|
| 18 |
+
MODEL_NAME = "KoelLabs/xlsr-english-01"
|
| 19 |
|
| 20 |
+
# 【【【【【 新增程式碼 #1:為 KoelLabs 模型設計的 IPA 正規化器 】】】】】
|
| 21 |
+
# 【保持不變】
|
| 22 |
+
def normalize_koel_ipa(raw_phonemes: list) -> list:
|
| 23 |
+
"""
|
| 24 |
+
將 KoelLabs 模型輸出的高級 IPA 序列,正規化為與 eSpeak 輸出可比的基礎 IPA 序列。
|
| 25 |
+
"""
|
| 26 |
+
normalized_phonemes = []
|
| 27 |
+
for phoneme in raw_phonemes:
|
| 28 |
+
if not phoneme:
|
| 29 |
+
continue
|
| 30 |
+
|
| 31 |
+
base_phoneme = phoneme.replace('ʰ', '').replace('̃', '').replace('̥', '')
|
| 32 |
+
|
| 33 |
+
if base_phoneme == 'β':
|
| 34 |
+
base_phoneme = 'v'
|
| 35 |
+
elif base_phoneme in ['x', 'ɣ', 'ɦ']:
|
| 36 |
+
base_phoneme = 'h'
|
| 37 |
+
|
| 38 |
+
normalized_phonemes.append(base_phoneme)
|
| 39 |
+
|
| 40 |
+
return normalized_phonemes
|
| 41 |
+
|
| 42 |
+
# --- 2. 智能 IPA 切分函數 (與您的原版邏輯完全相同) ---
|
| 43 |
+
# 【保持不變】
|
| 44 |
MULTI_CHAR_PHONEMES = {
|
| 45 |
+
'tʃ', 'dʒ',
|
| 46 |
+
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ',
|
| 47 |
+
'ɪə', 'eə', 'ʊə', 'ər'
|
| 48 |
}
|
| 49 |
|
| 50 |
def _tokenize_ipa(ipa_string: str) -> list:
|
|
|
|
| 63 |
i += 1
|
| 64 |
return phonemes
|
| 65 |
|
| 66 |
+
# --- 3. 核心分析函數 (主入口) (已修改以整合正規化器和快取邏輯) ---
|
|
|
|
| 67 |
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
|
| 68 |
"""
|
| 69 |
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
|
|
|
|
| 71 |
"""
|
| 72 |
# 檢查快取中是否已有模型,如果沒有則載入
|
| 73 |
if "model" not in cache:
|
| 74 |
+
print(f"快取未命中 (ASR_en_us_v2)。正在載入模型 '{MODEL_NAME}'...")
|
| 75 |
try:
|
| 76 |
+
# 【【【【【 修改 #3:使用 AutoProcessor 和 AutoModelForCTC 載入模型 】】】】】
|
| 77 |
# 載入模型並存入此函數的快取字典
|
| 78 |
+
cache["processor"] = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 79 |
+
cache["model"] = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
| 80 |
cache["model"].to(DEVICE)
|
| 81 |
print(f"模型 '{MODEL_NAME}' 已載入並快取。")
|
| 82 |
except Exception as e:
|
|
|
|
| 108 |
with torch.no_grad():
|
| 109 |
logits = model(input_values).logits
|
| 110 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 111 |
+
|
| 112 |
+
# 【【【【【 修改 #4:在此處插入正規化步驟 】】】】】
|
| 113 |
+
# 【保持不變】
|
| 114 |
+
raw_user_ipa_str = processor.decode(predicted_ids[0])
|
| 115 |
+
raw_user_phonemes = raw_user_ipa_str.split(' ')
|
| 116 |
+
normalized_user_phonemes = normalize_koel_ipa(raw_user_phonemes)
|
| 117 |
+
user_ipa_full = "".join(normalized_user_phonemes)
|
| 118 |
|
| 119 |
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 120 |
|
| 121 |
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 122 |
|
| 123 |
|
| 124 |
+
# --- 4. 對齊函數 (與您的原版邏輯完全相同) ---
|
| 125 |
+
# 【保持不變】
|
| 126 |
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 127 |
"""
|
| 128 |
(已修改) 使用新的切分邏輯執行音素對齊。
|
|
|
|
| 177 |
|
| 178 |
return alignments_by_word
|
| 179 |
|
| 180 |
+
# --- 5. 格式化函數 (與您的原版邏輯完全相同) ---
|
| 181 |
+
# 【保持不變】
|
| 182 |
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 183 |
total_phonemes = 0
|
| 184 |
total_errors = 0
|
|
|
|
| 253 |
"words": words_data
|
| 254 |
}
|
| 255 |
|
| 256 |
+
return final_result
|
analyzer/ASR_en_us_v2.py
CHANGED
|
@@ -1,50 +1,23 @@
|
|
| 1 |
import torch
|
| 2 |
import soundfile as sf
|
| 3 |
import librosa
|
| 4 |
-
|
| 5 |
-
from transformers import AutoProcessor, AutoModelForCTC
|
| 6 |
import os
|
| 7 |
from phonemizer import phonemize
|
| 8 |
import numpy as np
|
| 9 |
from datetime import datetime, timezone
|
| 10 |
|
| 11 |
-
# --- 全域設定 (已修改) ---
|
| 12 |
-
# 移除了全域的 processor 和 model
|
| 13 |
-
|
| 14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
-
print(f"INFO:
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
MODEL_NAME = "KoelLabs/xlsr-english-01"
|
| 19 |
-
|
| 20 |
-
# 【【【【【 新增程式碼 #1:為 KoelLabs 模型設計的 IPA 正規化器 】】】】】
|
| 21 |
-
# 【保持不變】
|
| 22 |
-
def normalize_koel_ipa(raw_phonemes: list) -> list:
|
| 23 |
-
"""
|
| 24 |
-
將 KoelLabs 模型輸出的高級 IPA 序列,正規化為與 eSpeak 輸出可比的基礎 IPA 序列。
|
| 25 |
-
"""
|
| 26 |
-
normalized_phonemes = []
|
| 27 |
-
for phoneme in raw_phonemes:
|
| 28 |
-
if not phoneme:
|
| 29 |
-
continue
|
| 30 |
-
|
| 31 |
-
base_phoneme = phoneme.replace('ʰ', '').replace('̃', '').replace('̥', '')
|
| 32 |
-
|
| 33 |
-
if base_phoneme == 'β':
|
| 34 |
-
base_phoneme = 'v'
|
| 35 |
-
elif base_phoneme in ['x', 'ɣ', 'ɦ']:
|
| 36 |
-
base_phoneme = 'h'
|
| 37 |
-
|
| 38 |
-
normalized_phonemes.append(base_phoneme)
|
| 39 |
-
|
| 40 |
-
return normalized_phonemes
|
| 41 |
-
|
| 42 |
-
# --- 2. 智能 IPA 切分函數 (與您的原版邏輯完全相同) ---
|
| 43 |
-
# 【保持不變】
|
| 44 |
MULTI_CHAR_PHONEMES = {
|
| 45 |
-
'tʃ', 'dʒ',
|
| 46 |
-
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ',
|
| 47 |
-
'ɪə', 'eə', 'ʊə', 'ər'
|
| 48 |
}
|
| 49 |
|
| 50 |
def _tokenize_ipa(ipa_string: str) -> list:
|
|
@@ -63,7 +36,8 @@ def _tokenize_ipa(ipa_string: str) -> list:
|
|
| 63 |
i += 1
|
| 64 |
return phonemes
|
| 65 |
|
| 66 |
-
# --- 3. 核心分析函數 (主入口) (
|
|
|
|
| 67 |
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
|
| 68 |
"""
|
| 69 |
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
|
|
@@ -71,12 +45,11 @@ def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dic
|
|
| 71 |
"""
|
| 72 |
# 檢查快取中是否已有模型,如果沒有則載入
|
| 73 |
if "model" not in cache:
|
| 74 |
-
print(f"快取未命中 (
|
| 75 |
try:
|
| 76 |
-
# 【【【【【 修改 #3:使用 AutoProcessor 和 AutoModelForCTC 載入模型 】】】】】
|
| 77 |
# 載入模型並存入此函數的快取字典
|
| 78 |
-
cache["processor"] =
|
| 79 |
-
cache["model"] =
|
| 80 |
cache["model"].to(DEVICE)
|
| 81 |
print(f"模型 '{MODEL_NAME}' 已載入並快取。")
|
| 82 |
except Exception as e:
|
|
@@ -108,21 +81,14 @@ def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dic
|
|
| 108 |
with torch.no_grad():
|
| 109 |
logits = model(input_values).logits
|
| 110 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 111 |
-
|
| 112 |
-
# 【【【【【 修改 #4:在此處插入正規化步驟 】】】】】
|
| 113 |
-
# 【保持不變】
|
| 114 |
-
raw_user_ipa_str = processor.decode(predicted_ids[0])
|
| 115 |
-
raw_user_phonemes = raw_user_ipa_str.split(' ')
|
| 116 |
-
normalized_user_phonemes = normalize_koel_ipa(raw_user_phonemes)
|
| 117 |
-
user_ipa_full = "".join(normalized_user_phonemes)
|
| 118 |
|
| 119 |
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 120 |
|
| 121 |
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 122 |
|
| 123 |
|
| 124 |
-
# --- 4. 對齊函數 (
|
| 125 |
-
# 【保持不變】
|
| 126 |
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 127 |
"""
|
| 128 |
(已修改) 使用新的切分邏輯執行音素對齊。
|
|
@@ -177,8 +143,7 @@ def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized
|
|
| 177 |
|
| 178 |
return alignments_by_word
|
| 179 |
|
| 180 |
-
# --- 5. 格式化函數 (
|
| 181 |
-
# 【保持不變】
|
| 182 |
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 183 |
total_phonemes = 0
|
| 184 |
total_errors = 0
|
|
|
|
| 1 |
import torch
|
| 2 |
import soundfile as sf
|
| 3 |
import librosa
|
| 4 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
|
|
| 5 |
import os
|
| 6 |
from phonemizer import phonemize
|
| 7 |
import numpy as np
|
| 8 |
from datetime import datetime, timezone
|
| 9 |
|
| 10 |
+
# --- 1. 全域設定 (已修改) ---
|
| 11 |
+
# 移除了全域的 processor 和 model 變數,只保留常數。
|
| 12 |
+
MODEL_NAME = "MultiBridge/wav2vec-LnNor-IPA-ft"
|
| 13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
print(f"INFO: ASR_en_us.py is configured to use device: {DEVICE}")
|
| 15 |
|
| 16 |
+
# --- 2. 智能 IPA 切分函數 (保持不變) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
MULTI_CHAR_PHONEMES = {
|
| 18 |
+
'tʃ', 'dʒ', # 輔音 (Affricates)
|
| 19 |
+
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ', # 雙元音 (Diphthongs)
|
| 20 |
+
'ɪə', 'eə', 'ʊə', 'ər' # R-controlled 和其他組合
|
| 21 |
}
|
| 22 |
|
| 23 |
def _tokenize_ipa(ipa_string: str) -> list:
|
|
|
|
| 36 |
i += 1
|
| 37 |
return phonemes
|
| 38 |
|
| 39 |
+
# --- 3. 核心分析函數 (主入口) (已修改) ---
|
| 40 |
+
# 刪除了舊的 load_model() 函數,並將其邏輯合併至此。
|
| 41 |
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
|
| 42 |
"""
|
| 43 |
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
|
|
|
|
| 45 |
"""
|
| 46 |
# 檢查快取中是否已有模型,如果沒有則載入
|
| 47 |
if "model" not in cache:
|
| 48 |
+
print(f"快取未命中 (ASR_en_us)。正在載入模型 '{MODEL_NAME}'...")
|
| 49 |
try:
|
|
|
|
| 50 |
# 載入模型並存入此函數的快取字典
|
| 51 |
+
cache["processor"] = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 52 |
+
cache["model"] = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 53 |
cache["model"].to(DEVICE)
|
| 54 |
print(f"模型 '{MODEL_NAME}' 已載入並快取。")
|
| 55 |
except Exception as e:
|
|
|
|
| 81 |
with torch.no_grad():
|
| 82 |
logits = model(input_values).logits
|
| 83 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 84 |
+
user_ipa_full = processor.decode(predicted_ids[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 87 |
|
| 88 |
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 89 |
|
| 90 |
|
| 91 |
+
# --- 4. 對齊函數 (保持不變) ---
|
|
|
|
| 92 |
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 93 |
"""
|
| 94 |
(已修改) 使用新的切分邏輯執行音素對齊。
|
|
|
|
| 143 |
|
| 144 |
return alignments_by_word
|
| 145 |
|
| 146 |
+
# --- 5. 格式化函數 (保持不變) ---
|
|
|
|
| 147 |
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 148 |
total_phonemes = 0
|
| 149 |
total_errors = 0
|