Spaces:
Runtime error
Runtime error
File size: 5,873 Bytes
dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 46b5bb6 dd411f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import numpy as np
import random
from datetime import datetime
import torch
from diffusers import DiffusionPipeline
from optimum.intel.openvino import OVStableDiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Chọn mô hình từ dropdown
model_choices = {
"SD‑Turbo (stabilityai/sd-turbo)": "stabilityai/sd-turbo",
"Stable Diffusion 1.5 (runwayml/stable-diffusion-1.5)": "runwayml/stable-diffusion-1.5",
"OpenVINO version (HARRY07979/sd-v1-5-openvino)": "HARRY07979/sd-v1-5-openvino",
}
# Biến toàn cục để lưu model đang dùng
current_model_id = None
pipe = None
# ---------------------------------------------------------
# Hàm load mô hình
def load_pipeline(model_id):
print(f"[INFO] Loading model: {model_id}")
if "openvino" in model_id.lower():
# Mô hình OpenVINO dùng OVStableDiffusionPipeline
pipe = OVStableDiffusionPipeline.from_pretrained(model_id)
pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
pipe.compile()
else:
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
return pipe
# ---------------------------------------------------------
# Hàm infer
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
model_selector,
):
global pipe, current_model_id
selected_model_id = model_choices[model_selector]
# Nếu đổi mô hình → load lại
if selected_model_id != current_model_id or pipe is None:
pipe = load_pipeline(selected_model_id)
current_model_id = selected_model_id
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Thời gian bắt đầu
t0 = datetime.now()
# Gọi pipeline theo loại
if "openvino" in selected_model_id.lower():
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
else:
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# Thời gian kết thúc
t1 = datetime.now()
delta = t1 - t0
total_seconds = delta.total_seconds()
days = delta.days
hours, rem = divmod(delta.seconds, 3600)
minutes, seconds = divmod(rem, 60)
microsecs = delta.microseconds
print(f"Start time: {t0.isoformat(sep=' ')}")
print(f"End time : {t1.isoformat(sep=' ')}")
print(f"Elapsed : {days}d {hours}h {minutes}m {seconds}s {microsecs}µs")
print(f"Total time: {total_seconds:.3f} seconds")
return image, seed
# ---------------------------------------------------------
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text-to-Image Generator (Supports SD-Turbo / SD 1.5 / OpenVINO)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt here...",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
)
height = gr.Slider(
label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5
)
num_inference_steps = gr.Slider(
label="Inference steps", minimum=1, maximum=100, step=1, value=25
)
model_selector = gr.Dropdown(
label="Select Model",
choices=list(model_choices.keys()),
value="SD‑Turbo (stabilityai/sd-turbo)",
)
gr.Examples(
examples=[
"Astronaut in a jungle, detailed, 8k",
"A cyberpunk dragon flying through neon city",
"A fantasy landscape with floating islands",
],
inputs=[prompt],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
model_selector,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|