File size: 5,873 Bytes
dd411f6
 
 
46b5bb6
dd411f6
 
46b5bb6
 
dd411f6
 
 
 
 
 
46b5bb6
 
 
 
 
 
dd411f6
46b5bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd411f6
 
 
 
 
 
 
 
 
46b5bb6
dd411f6
46b5bb6
dd411f6
46b5bb6
dd411f6
46b5bb6
 
 
 
dd411f6
46b5bb6
 
dd411f6
46b5bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd411f6
46b5bb6
dd411f6
46b5bb6
dd411f6
 
 
 
 
 
 
 
 
46b5bb6
dd411f6
 
 
 
 
 
46b5bb6
dd411f6
 
46b5bb6
dd411f6
 
 
 
 
 
 
 
 
46b5bb6
dd411f6
 
 
 
46b5bb6
dd411f6
 
46b5bb6
dd411f6
 
 
 
46b5bb6
dd411f6
 
46b5bb6
dd411f6
 
46b5bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd411f6
 
 
 
 
 
 
 
 
 
 
 
46b5bb6
dd411f6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import numpy as np
import random
from datetime import datetime

import torch
from diffusers import DiffusionPipeline
from optimum.intel.openvino import OVStableDiffusionPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Chọn mô hình từ dropdown
model_choices = {
    "SD‑Turbo (stabilityai/sd-turbo)": "stabilityai/sd-turbo",
    "Stable Diffusion 1.5 (runwayml/stable-diffusion-1.5)": "runwayml/stable-diffusion-1.5",
    "OpenVINO version (HARRY07979/sd-v1-5-openvino)": "HARRY07979/sd-v1-5-openvino",
}

# Biến toàn cục để lưu model đang dùng
current_model_id = None
pipe = None

# ---------------------------------------------------------
# Hàm load mô hình
def load_pipeline(model_id):
    print(f"[INFO] Loading model: {model_id}")
    if "openvino" in model_id.lower():
        # Mô hình OpenVINO dùng OVStableDiffusionPipeline
        pipe = OVStableDiffusionPipeline.from_pretrained(model_id)
        pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
        pipe.compile()
    else:
        if torch.cuda.is_available():
            torch_dtype = torch.float16
        else:
            torch_dtype = torch.float32
        pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
        pipe = pipe.to(device)
    return pipe

# ---------------------------------------------------------
# Hàm infer
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    model_selector,
):
    global pipe, current_model_id

    selected_model_id = model_choices[model_selector]

    # Nếu đổi mô hình → load lại
    if selected_model_id != current_model_id or pipe is None:
        pipe = load_pipeline(selected_model_id)
        current_model_id = selected_model_id

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Thời gian bắt đầu
    t0 = datetime.now()

    # Gọi pipeline theo loại
    if "openvino" in selected_model_id.lower():
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
        ).images[0]
    else:
        generator = torch.Generator().manual_seed(seed)
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

    # Thời gian kết thúc
    t1 = datetime.now()
    delta = t1 - t0
    total_seconds = delta.total_seconds()
    days = delta.days
    hours, rem = divmod(delta.seconds, 3600)
    minutes, seconds = divmod(rem, 60)
    microsecs = delta.microseconds

    print(f"Start time: {t0.isoformat(sep=' ')}")
    print(f"End time  : {t1.isoformat(sep=' ')}")
    print(f"Elapsed   : {days}d {hours}h {minutes}m {seconds}s {microsecs}µs")
    print(f"Total time: {total_seconds:.3f} seconds")

    return image, seed

# ---------------------------------------------------------
css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Text-to-Image Generator (Supports SD-Turbo / SD 1.5 / OpenVINO)")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt here...",
                container=False,
            )
            run_button = gr.Button("Generate", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
                )
                height = gr.Slider(
                    label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5
                )
                num_inference_steps = gr.Slider(
                    label="Inference steps", minimum=1, maximum=100, step=1, value=25
                )

            model_selector = gr.Dropdown(
                label="Select Model",
                choices=list(model_choices.keys()),
                value="SD‑Turbo (stabilityai/sd-turbo)",
            )

        gr.Examples(
            examples=[
                "Astronaut in a jungle, detailed, 8k",
                "A cyberpunk dragon flying through neon city",
                "A fantasy landscape with floating islands",
            ],
            inputs=[prompt],
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            model_selector,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()