import torch import torch.nn as nn import torch.nn.functional as F class Quantizer(nn.Module): def __init__(self, n_e, e_dim, beta): super(Quantizer, self).__init__() self.e_dim = e_dim self.n_e = n_e self.beta = beta self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) def forward(self, z): """ Inputs the output of the encoder network z and maps it to a discrete one-hot vectort that is the index of the closest embedding vector e_j z (continuous) -> z_q (discrete) :param z (B, seq_len, channel): :return z_q: """ assert z.shape[-1] == self.e_dim z_flattened = z.contiguous().view(-1, self.e_dim) # B x V d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ torch.sum(self.embedding.weight**2, dim=1) - 2 * \ torch.matmul(z_flattened, self.embedding.weight.t()) # B x 1 min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) # compute loss for embedding loss = torch.mean((z_q - z.detach())**2) + self.beta * \ torch.mean((z_q.detach() - z)**2) # preserve gradients z_q = z + (z_q - z).detach() min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype) e_mean = torch.mean(min_encodings, dim=0) perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10))) return loss, z_q, min_encoding_indices, perplexity def map2index(self, z): """ Inputs the output of the encoder network z and maps it to a discrete one-hot vectort that is the index of the closest embedding vector e_j z (continuous) -> z_q (discrete) :param z (B, seq_len, channel): :return z_q: """ assert z.shape[-1] == self.e_dim #print(z.shape) z_flattened = z.contiguous().view(-1, self.e_dim) #print(z_flattened.shape) # B x V d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ torch.sum(self.embedding.weight**2, dim=1) - 2 * \ torch.matmul(z_flattened, self.embedding.weight.t()) # B x 1 min_encoding_indices = torch.argmin(d, dim=1) return min_encoding_indices.reshape(z.shape[0], -1) def get_codebook_entry(self, indices): """ :param indices(B, seq_len): :return z_q(B, seq_len, e_dim): """ index_flattened = indices.view(-1) z_q = self.embedding(index_flattened) z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous() return z_q class EmbeddingEMA(nn.Module): def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): super(EmbeddingEMA, self).__init__() self.decay = decay self.eps = eps weight = torch.randn(num_tokens, codebook_dim) self.weight = nn.Parameter(weight, requires_grad=False) self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False) self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False) self.update = True def forward(self, embed_id): return F.embedding(embed_id, self.weight) def cluster_size_ema_update(self, new_cluster_size): self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) def embed_avg_ema_update(self, new_emb_avg): self.embed_avg.data.mul_(self.decay).add(new_emb_avg, alpha=1 - self.decay) def weight_update(self, num_tokens): n = self.cluster_size.sum() smoothed_cluster_size = ( (self.cluster_size + self.eps) / (n + num_tokens*self.eps) * n ) embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) self.weight.data.copy_(embed_normalized) class EMAVectorQuantizer(nn.Module): def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5): super(EMAVectorQuantizer, self).__init__() self.codebook_dim = embedding_dim self.num_tokens = n_embed self.beta = beta self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) def forward(self, z): z_flattened = z.view(-1, self.codebook_dim) d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ torch.matmul(z_flattened, self.embedding.weight.t()) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) min_encodings = F.one_hot(min_encoding_indices, self.num_tokens).type(z.dtype) e_mean = torch.mean(min_encodings, dim=0) perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) if self.training and self.embedding.update: encoding_sum = min_encodings.sum(0) embed_sum = min_encodings.transpose(0, 1)@z_flattened self.embedding.cluster_size_ema_update(encoding_sum) self.embedding.embed_avg_ema_update(embed_sum) self.embedding.weight_update(self.num_tokens) loss = self.beta * F.mse_loss(z_q.detach(), z) z_q = z + (z_q - z).detach() return loss, z_q, min_encoding_indices, perplexity # class GumbelQuantizer(nn.Module): # def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True, # kl_weight=5e-4, temp_init=1.0): # super(GumbelQuantizer, self).__init__() # # self.embedding_dim = embedding_dim # self.n_embed = n_embed # # self.straight_through = straight_through # self.temperature = temp_init # self.kl_weight = kl_weight # # self.proj = nn.Linear(num_hiddens, n_embed) # self.embed = nn.Embedding(n_embed, embedding_dim)