Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn as nn | |
import os | |
import pickle | |
import numpy as np | |
from torch.nn.utils import weight_norm | |
from .utils.build_vocab import Vocab | |
class Chomp1d(nn.Module): | |
def __init__(self, chomp_size): | |
super(Chomp1d, self).__init__() | |
self.chomp_size = chomp_size | |
def forward(self, x): | |
return x[:, :, :-self.chomp_size].contiguous() | |
class TemporalBlock(nn.Module): | |
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): | |
super(TemporalBlock, self).__init__() | |
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, | |
stride=stride, padding=padding, dilation=dilation)) | |
self.chomp1 = Chomp1d(padding) | |
self.relu1 = nn.ReLU() | |
self.dropout1 = nn.Dropout(dropout) | |
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, | |
stride=stride, padding=padding, dilation=dilation)) | |
self.chomp2 = Chomp1d(padding) | |
self.relu2 = nn.ReLU() | |
self.dropout2 = nn.Dropout(dropout) | |
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, | |
self.conv2, self.chomp2, self.relu2, self.dropout2) | |
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None | |
self.relu = nn.ReLU() | |
self.init_weights() | |
def init_weights(self): | |
self.conv1.weight.data.normal_(0, 0.01) | |
self.conv2.weight.data.normal_(0, 0.01) | |
if self.downsample is not None: | |
self.downsample.weight.data.normal_(0, 0.01) | |
def forward(self, x): | |
out = self.net(x) | |
res = x if self.downsample is None else self.downsample(x) | |
return self.relu(out + res) | |
class TemporalConvNet(nn.Module): | |
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): | |
super(TemporalConvNet, self).__init__() | |
layers = [] | |
num_levels = len(num_channels) | |
for i in range(num_levels): | |
dilation_size = 2 ** i | |
in_channels = num_inputs if i == 0 else num_channels[i-1] | |
out_channels = num_channels[i] | |
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, | |
padding=(kernel_size-1) * dilation_size, dropout=dropout)] | |
self.network = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.network(x) | |
class TextEncoderTCN(nn.Module): | |
""" based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """ | |
def __init__(self, args, n_words, embed_size=300, pre_trained_embedding=None, | |
kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False): | |
super(TextEncoderTCN, self).__init__() | |
if word_cache: | |
self.embedding = None | |
else: | |
if pre_trained_embedding is not None: # use pre-trained embedding (fasttext) | |
#print(pre_trained_embedding.shape) | |
assert pre_trained_embedding.shape[0] == n_words | |
assert pre_trained_embedding.shape[1] == embed_size | |
self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding), | |
freeze=args.freeze_wordembed) | |
else: | |
self.embedding = nn.Embedding(n_words, embed_size) | |
num_channels = [args.hidden_size] * args.n_layer | |
self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout) | |
self.decoder = nn.Linear(num_channels[-1], args.word_f) | |
self.drop = nn.Dropout(emb_dropout) | |
self.emb_dropout = emb_dropout | |
self.init_weights() | |
def init_weights(self): | |
self.decoder.bias.data.fill_(0) | |
self.decoder.weight.data.normal_(0, 0.01) | |
def forward(self, input): | |
#print(input.shape) | |
if self.embedding is None: | |
emb = self.drop(input) | |
else: | |
emb = self.drop(self.embedding(input)) | |
y = self.tcn(emb.transpose(1, 2)).transpose(1, 2) | |
y = self.decoder(y) | |
return y.contiguous(), 0 | |
class BasicBlock(nn.Module): | |
""" based on timm: https://github.com/rwightman/pytorch-image-models """ | |
def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64, | |
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = nn.Conv1d( | |
inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation, | |
dilation=dilation, bias=True) | |
self.bn1 = norm_layer(planes) | |
self.act1 = act_layer(inplace=True) | |
self.conv2 = nn.Conv1d( | |
planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True) | |
self.bn2 = norm_layer(planes) | |
self.act2 = act_layer(inplace=True) | |
if downsample is not None: | |
self.downsample = nn.Sequential( | |
nn.Conv1d(inplanes, planes, stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True), | |
norm_layer(planes), | |
) | |
else: self.downsample=None | |
self.stride = stride | |
self.dilation = dilation | |
self.drop_block = drop_block | |
self.drop_path = drop_path | |
def zero_init_last_bn(self): | |
nn.init.zeros_(self.bn2.weight) | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
if self.downsample is not None: | |
shortcut = self.downsample(shortcut) | |
x += shortcut | |
x = self.act2(x) | |
return x | |
class WavEncoder(nn.Module): | |
def __init__(self, out_dim): | |
super().__init__() | |
self.out_dim = out_dim | |
self.feat_extractor = nn.Sequential( | |
BasicBlock(1, 32, 15, 5, first_dilation=1600, downsample=True), | |
BasicBlock(32, 32, 15, 6, first_dilation=0, downsample=True), | |
BasicBlock(32, 32, 15, 1, first_dilation=7, ), | |
BasicBlock(32, 64, 15, 6, first_dilation=0, downsample=True), | |
BasicBlock(64, 64, 15, 1, first_dilation=7), | |
BasicBlock(64, 128, 15, 6, first_dilation=0,downsample=True), | |
) | |
def forward(self, wav_data): | |
wav_data = wav_data.unsqueeze(1) | |
out = self.feat_extractor(wav_data) | |
return out.transpose(1, 2) | |
class PoseGenerator(nn.Module): | |
""" | |
End2End model | |
audio, text and speaker ID encoder are customized based on Yoon et al. SIGGRAPH ASIA 2020 | |
""" | |
def __init__(self, args): | |
super().__init__() | |
self.args = args | |
self.pre_length = args.pre_frames | |
self.gen_length = args.pose_length - args.pre_frames | |
self.pose_dims = args.pose_dims | |
self.facial_f = args.facial_f | |
self.speaker_f = args.speaker_f | |
self.audio_f = args.audio_f | |
self.word_f = args.word_f | |
self.emotion_f = args.emotion_f | |
self.facial_dims = args.facial_dims | |
self.args.speaker_dims = args.speaker_dims | |
self.emotion_dims = args.emotion_dims | |
self.in_size = self.audio_f + self.pose_dims + self.facial_f + self.word_f + 1 | |
self.audio_encoder = WavEncoder(self.audio_f) | |
self.hidden_size = args.hidden_size | |
self.n_layer = args.n_layer | |
if self.facial_f is not 0: | |
self.facial_encoder = nn.Sequential( | |
BasicBlock(self.facial_dims, self.facial_f//2, 7, 1, first_dilation=3, downsample=True), | |
BasicBlock(self.facial_f//2, self.facial_f//2, 3, 1, first_dilation=1, downsample=True), | |
BasicBlock(self.facial_f//2, self.facial_f//2, 3, 1, first_dilation=1, ), | |
BasicBlock(self.facial_f//2, self.facial_f, 3, 1, first_dilation=1, downsample=True), | |
) | |
else: | |
self.facial_encoder = None | |
self.text_encoder = None | |
if self.word_f is not 0: | |
if args.word_cache: | |
self.text_encoder = TextEncoderTCN(args, args.word_index_num, args.word_dims, pre_trained_embedding=None, | |
dropout=args.dropout_prob, word_cache=True) | |
else: | |
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f: | |
self.lang_model = pickle.load(f) | |
pre_trained_embedding = self.lang_model.word_embedding_weights | |
self.text_encoder = TextEncoderTCN(args, args.word_index_num, args.word_dims, pre_trained_embedding=pre_trained_embedding, | |
dropout=args.dropout_prob) | |
self.speaker_embedding = None | |
if self.speaker_f is not 0: | |
self.in_size += self.speaker_f | |
self.speaker_embedding = nn.Sequential( | |
nn.Embedding(self.args.speaker_dims, self.speaker_f), | |
nn.Linear(self.speaker_f, self.speaker_f), | |
nn.LeakyReLU(True) | |
) | |
self.emotion_embedding = None | |
if self.emotion_f is not 0: | |
self.in_size += self.emotion_f | |
self.emotion_embedding = nn.Sequential( | |
nn.Embedding(self.emotion_dims, self.emotion_f), | |
nn.Linear(self.emotion_f, self.emotion_f) | |
) | |
# self.emotion_embedding_tail = nn.Sequential( | |
# nn.Conv1d(self.emotion_f, 8, 9, 1, 4), | |
# nn.BatchNorm1d(8), | |
# nn.LeakyReLU(0.3, inplace=True), | |
# nn.Conv1d(8, 16, 9, 1, 4), | |
# nn.BatchNorm1d(16), | |
# nn.LeakyReLU(0.3, inplace=True), | |
# nn.Conv1d(16, 16, 9, 1, 4), | |
# nn.BatchNorm1d(16), | |
# nn.LeakyReLU(0.3, inplace=True), | |
# nn.Conv1d(16, self.emotion_f, 9, 1, 4), | |
# nn.BatchNorm1d(self.emotion_f), | |
# nn.LeakyReLU(0.3, inplace=True), | |
# ) | |
self.LSTM = nn.LSTM(self.in_size+3, hidden_size=self.hidden_size, num_layers=args.n_layer, batch_first=True, | |
bidirectional=True, dropout=args.dropout_prob) | |
self.out = nn.Sequential( | |
nn.Linear(self.hidden_size, self.hidden_size//2), | |
nn.LeakyReLU(True), | |
nn.Linear(self.hidden_size//2, 330-180) | |
) | |
self.LSTM_hands = nn.LSTM(self.in_size+150+3, hidden_size=self.hidden_size, num_layers=args.n_layer, batch_first=True, | |
bidirectional=True, dropout=args.dropout_prob) | |
self.out_hands = nn.Sequential( | |
nn.Linear(self.hidden_size, self.hidden_size//2), | |
nn.LeakyReLU(True), | |
nn.Linear(self.hidden_size//2, 180+3) | |
) | |
self.do_flatten_parameters = False | |
if torch.cuda.device_count() > 1: | |
self.do_flatten_parameters = True | |
def forward(self, pre_seq, in_audio=None, in_facial=None, in_text=None, in_id=None, in_emo=None, is_test=False): | |
if self.do_flatten_parameters: | |
self.LSTM.flatten_parameters() | |
text_feat_seq = audio_feat_seq = None | |
if in_audio is not None: | |
audio_feat_seq = self.audio_encoder(in_audio) | |
if in_text is not None: | |
text_feat_seq, _ = self.text_encoder(in_text) | |
assert(audio_feat_seq.shape[1] == text_feat_seq.shape[1]) | |
if self.facial_f is not 0: | |
face_feat_seq = self.facial_encoder(in_facial.permute([0, 2, 1])) | |
face_feat_seq = face_feat_seq.permute([0, 2, 1]) | |
speaker_feat_seq = None | |
if self.speaker_embedding: | |
speaker_feat_seq = self.speaker_embedding(in_id) | |
emo_feat_seq = None | |
if self.emotion_embedding: | |
emo_feat_seq = self.emotion_embedding(in_emo) | |
emo_feat_seq = emo_feat_seq.permute([0,2,1]) | |
emo_feat_seq = self.emotion_embedding_tail(emo_feat_seq) | |
emo_feat_seq = emo_feat_seq.permute([0,2,1]) | |
if audio_feat_seq.shape[1] != pre_seq.shape[1]: | |
diff_length = pre_seq.shape[1] - audio_feat_seq.shape[1] | |
audio_feat_seq = torch.cat((audio_feat_seq, audio_feat_seq[:,-diff_length:, :].reshape(1,diff_length,-1)),1) | |
if self.audio_f is not 0 and self.facial_f is 0: | |
in_data = torch.cat((pre_seq, audio_feat_seq), dim=2) | |
elif self.audio_f is not 0 and self.facial_f is not 0: | |
in_data = torch.cat((pre_seq, audio_feat_seq, face_feat_seq), dim=2) | |
else: pass | |
if text_feat_seq is not None: | |
in_data = torch.cat((in_data, text_feat_seq), dim=2) | |
if emo_feat_seq is not None: | |
in_data = torch.cat((in_data, emo_feat_seq), dim=2) | |
if speaker_feat_seq is not None: | |
repeated_s = speaker_feat_seq | |
if len(repeated_s.shape) == 2: | |
repeated_s = repeated_s.reshape(1, repeated_s.shape[1], repeated_s.shape[0]) | |
repeated_s = repeated_s.repeat(1, in_data.shape[1], 1) | |
in_data = torch.cat((in_data, repeated_s), dim=2) | |
output, _ = self.LSTM(in_data) | |
output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] | |
output = self.out(output.reshape(-1, output.shape[2])) | |
decoder_outputs = output.reshape(in_data.shape[0], in_data.shape[1], -1) | |
return decoder_outputs | |
class CaMN(PoseGenerator): | |
def __init__(self, args): | |
super().__init__(args) | |
self.audio_fusion_dim = self.audio_f+self.speaker_f+self.emotion_f+self.word_f | |
self.facial_fusion_dim = self.audio_fusion_dim + self.facial_f | |
self.audio_fusion = nn.Sequential( | |
nn.Linear(self.audio_fusion_dim, self.hidden_size//2), | |
nn.LeakyReLU(True), | |
nn.Linear(self.hidden_size//2, self.audio_f), | |
nn.LeakyReLU(True), | |
) | |
self.facial_fusion = nn.Sequential( | |
nn.Linear(self.facial_fusion_dim, self.hidden_size//2), | |
nn.LeakyReLU(True), | |
nn.Linear(self.hidden_size//2, self.facial_f), | |
nn.LeakyReLU(True), | |
) | |
def forward(self, pre_seq, in_audio=None, in_facial=None, in_text=None, in_id=None, in_emo=None): | |
if self.do_flatten_parameters: | |
self.LSTM.flatten_parameters() | |
decoder_hidden = decoder_hidden_hands = None | |
text_feat_seq = audio_feat_seq = speaker_feat_seq = emo_feat_seq = face_feat_seq = None | |
in_data = None | |
if self.speaker_embedding: | |
speaker_feat_seq = self.speaker_embedding(in_id).squeeze(2) | |
in_data = torch.cat((in_data, speaker_feat_seq), 2) if in_data is not None else speaker_feat_seq | |
if self.emotion_embedding: | |
emo_feat_seq = self.emotion_embedding(in_emo).squeeze(2) | |
in_data = torch.cat((in_data, emo_feat_seq), 2) | |
if in_text is not None: | |
text_feat_seq, _ = self.text_encoder(in_text) | |
in_data = torch.cat((in_data, text_feat_seq), 2) if in_data is not None else text_feat_seq | |
if in_audio is not None: | |
audio_feat_seq = self.audio_encoder(in_audio) | |
if in_text is not None: | |
if (audio_feat_seq.shape[1] != text_feat_seq.shape[1]): | |
min_gap = text_feat_seq.shape[1] - audio_feat_seq.shape[1] | |
audio_feat_seq = torch.cat((audio_feat_seq, audio_feat_seq[:,-min_gap:, :]),1) | |
audio_fusion_seq = self.audio_fusion(torch.cat((audio_feat_seq, emo_feat_seq, speaker_feat_seq, text_feat_seq), dim=2).reshape(-1, self.audio_fusion_dim)) | |
audio_feat_seq = audio_fusion_seq.reshape(*audio_feat_seq.shape) | |
in_data = torch.cat((in_data, audio_feat_seq), 2) if in_data is not None else audio_feat_seq | |
if self.facial_f is not 0: | |
face_feat_seq = self.facial_encoder(in_facial.permute([0, 2, 1])) | |
face_feat_seq = face_feat_seq.permute([0, 2, 1]) | |
if (audio_feat_seq.shape[1] != face_feat_seq.shape[1]): | |
min_gap_2 = face_feat_seq.shape[1] - audio_feat_seq.shape[1] | |
if min_gap_2 > 0: | |
face_feat_seq = face_feat_seq[:,:audio_feat_seq.shape[1], :] | |
else: | |
face_feat_seq = torch.cat((face_feat_seq, face_feat_seq[:,-min_gap_2:, :]),1) | |
face_fusion_seq = self.facial_fusion(torch.cat((face_feat_seq, audio_feat_seq, emo_feat_seq, speaker_feat_seq, text_feat_seq), dim=2).reshape(-1, self.facial_fusion_dim)) | |
face_feat_seq = face_fusion_seq.reshape(*face_feat_seq.shape) | |
in_data = torch.cat((in_data, face_feat_seq), 2) if in_data is not None else face_feat_seq | |
in_data = torch.cat((pre_seq, in_data), dim=2) | |
output, _ = self.LSTM(in_data) | |
output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] | |
output = self.out(output.reshape(-1, output.shape[2])) | |
decoder_outputs = output.reshape(in_data.shape[0], in_data.shape[1], -1) | |
in_data = torch.cat((in_data, decoder_outputs), dim=2) | |
output_hands, _ = self.LSTM_hands(in_data) | |
output_hands = output_hands[:, :, :self.hidden_size] + output_hands[:, :, self.hidden_size:] | |
output_hands = self.out_hands(output_hands.reshape(-1, output_hands.shape[2])) | |
decoder_outputs_hands = output_hands.reshape(in_data.shape[0], in_data.shape[1], -1) | |
decoder_outputs_final = torch.zeros((in_data.shape[0], in_data.shape[1], 333)).to(in_data.device) | |
decoder_outputs_final[:, :, 0:150] = decoder_outputs[:, :, 0:150] | |
decoder_outputs_final[:, :, 150:333] = decoder_outputs_hands[:, :, 0:183] | |
return { | |
"rec_pose": decoder_outputs_final, | |
} | |
class ConvDiscriminator(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.input_size = args.pose_dims | |
self.hidden_size = 64 | |
self.pre_conv = nn.Sequential( | |
nn.Conv1d(self.input_size, 16, 3), | |
nn.BatchNorm1d(16), | |
nn.LeakyReLU(True), | |
nn.Conv1d(16, 8, 3), | |
nn.BatchNorm1d(8), | |
nn.LeakyReLU(True), | |
nn.Conv1d(8, 8, 3), | |
) | |
self.LSTM = nn.LSTM(8, hidden_size=self.hidden_size, num_layers=4, bidirectional=True, | |
dropout=0.3, batch_first=True) | |
self.out = nn.Linear(self.hidden_size, 1) | |
self.out2 = nn.Linear(34-6, 1) | |
self.do_flatten_parameters = False | |
if torch.cuda.device_count() > 1: | |
self.do_flatten_parameters = True | |
def forward(self, poses): | |
if self.do_flatten_parameters: | |
self.LSTM.flatten_parameters() | |
poses = poses.transpose(1, 2) | |
feat = self.pre_conv(poses) | |
feat = feat.transpose(1, 2) | |
output, _ = self.LSTM(feat) | |
output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] | |
batch_size = poses.shape[0] | |
output = output.contiguous().view(-1, output.shape[2]) | |
output = self.out(output) # apply linear to every output | |
output = output.view(batch_size, -1) | |
output = self.out2(output) | |
output = torch.sigmoid(output) | |
return output |