Spaces:
Running
on
T4
Running
on
T4
import spaces | |
import os | |
# os.system("Xvfb :99 -ac &") | |
# os.environ["DISPLAY"] = ":99" | |
import OpenGL.GL as gl | |
os.environ["PYOPENGL_PLATFORM"] = "egl" | |
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1" | |
import signal | |
import time | |
import csv | |
import sys | |
import warnings | |
import random | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
import torch.multiprocessing as mp | |
import numpy as np | |
import time | |
import pprint | |
from loguru import logger | |
import smplx | |
from torch.utils.tensorboard import SummaryWriter | |
import wandb | |
import matplotlib.pyplot as plt | |
from utils import config, logger_tools, other_tools_hf, metric, data_transfer | |
from dataloaders import data_tools | |
from dataloaders.build_vocab import Vocab | |
from optimizers.optim_factory import create_optimizer | |
from optimizers.scheduler_factory import create_scheduler | |
from optimizers.loss_factory import get_loss_func | |
from dataloaders.data_tools import joints_list | |
from utils import rotation_conversions as rc | |
import soundfile as sf | |
import librosa | |
def inverse_selection_tensor(filtered_t, selection_array, n): | |
selection_array = torch.from_numpy(selection_array).cuda() | |
original_shape_t = torch.zeros((n, 165)).cuda() | |
selected_indices = torch.where(selection_array == 1)[0] | |
for i in range(n): | |
original_shape_t[i, selected_indices] = filtered_t[i] | |
return original_shape_t | |
def test_demo_gpu( | |
model, vq_model_face, vq_model_upper, vq_model_hands, vq_model_lower, global_motion, smplx_model, | |
dict_data, | |
args, | |
joints, joint_mask_upper, joint_mask_lower, joint_mask_hands, | |
log_softmax, | |
): | |
rank = 0 | |
other_tools_hf.load_checkpoints(vq_model_face, args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name) | |
other_tools_hf.load_checkpoints(vq_model_upper, args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name) | |
other_tools_hf.load_checkpoints(vq_model_hands, args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name) | |
other_tools_hf.load_checkpoints(vq_model_lower, args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name) | |
other_tools_hf.load_checkpoints(global_motion, args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name) | |
other_tools_hf.load_checkpoints(model, args.test_ckpt, args.g_name) | |
model.to(rank).eval() | |
smplx_model.to(rank).eval() | |
vq_model_face.to(rank).eval() | |
vq_model_upper.to(rank).eval() | |
vq_model_hands.to(rank).eval() | |
vq_model_lower.to(rank).eval() | |
global_motion.to(rank).eval() | |
with torch.no_grad(): | |
tar_pose_raw = dict_data["pose"] | |
tar_pose = tar_pose_raw[:, :, :165].to(rank) | |
tar_contact = tar_pose_raw[:, :, 165:169].to(rank) | |
tar_trans = dict_data["trans"].to(rank) | |
tar_exps = dict_data["facial"].to(rank) | |
in_audio = dict_data["audio"].to(rank) | |
in_word = None# dict_data["word"].to(rank) | |
tar_beta = dict_data["beta"].to(rank) | |
tar_id = dict_data["id"].to(rank).long() | |
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints | |
tar_pose_jaw = tar_pose[:, :, 66:69] | |
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) | |
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) | |
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) | |
tar_pose_hands = tar_pose[:, :, 25*3:55*3] | |
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) | |
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) | |
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)] | |
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) | |
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) | |
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)] | |
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) | |
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) | |
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) | |
# tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3)) | |
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) | |
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2) | |
tar_index_value_face_top = vq_model_face.map2index(tar_pose_face) # bs*n/4 | |
tar_index_value_upper_top = vq_model_upper.map2index(tar_pose_upper) # bs*n/4 | |
tar_index_value_hands_top = vq_model_hands.map2index(tar_pose_hands) # bs*n/4 | |
tar_index_value_lower_top = vq_model_lower.map2index(tar_pose_lower) # bs*n/4 | |
latent_face_top = vq_model_face.map2latent(tar_pose_face) # bs*n/4 | |
latent_upper_top = vq_model_upper.map2latent(tar_pose_upper) # bs*n/4 | |
latent_hands_top = vq_model_hands.map2latent(tar_pose_hands) # bs*n/4 | |
latent_lower_top = vq_model_lower.map2latent(tar_pose_lower) # bs*n/4 | |
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2) | |
index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long() | |
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) | |
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) | |
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) | |
loaded_data = { | |
"tar_pose_jaw": tar_pose_jaw, | |
"tar_pose_face": tar_pose_face, | |
"tar_pose_upper": tar_pose_upper, | |
"tar_pose_lower": tar_pose_lower, | |
"tar_pose_hands": tar_pose_hands, | |
'tar_pose_leg': tar_pose_leg, | |
"in_audio": in_audio, | |
"in_word": in_word, | |
"tar_trans": tar_trans, | |
"tar_exps": tar_exps, | |
"tar_beta": tar_beta, | |
"tar_pose": tar_pose, | |
"tar4dis": tar4dis, | |
"tar_index_value_face_top": tar_index_value_face_top, | |
"tar_index_value_upper_top": tar_index_value_upper_top, | |
"tar_index_value_hands_top": tar_index_value_hands_top, | |
"tar_index_value_lower_top": tar_index_value_lower_top, | |
"latent_face_top": latent_face_top, | |
"latent_upper_top": latent_upper_top, | |
"latent_hands_top": latent_hands_top, | |
"latent_lower_top": latent_lower_top, | |
"latent_in": latent_in, | |
"index_in": index_in, | |
"tar_id": tar_id, | |
"latent_all": latent_all, | |
"tar_pose_6d": tar_pose_6d, | |
"tar_contact": tar_contact, | |
} | |
mode = 'test' | |
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], joints | |
tar_pose = loaded_data["tar_pose"] | |
tar_beta = loaded_data["tar_beta"] | |
in_word =None# loaded_data["in_word"] | |
tar_exps = loaded_data["tar_exps"] | |
tar_contact = loaded_data["tar_contact"] | |
in_audio = loaded_data["in_audio"] | |
tar_trans = loaded_data["tar_trans"] | |
remain = n%8 | |
if remain != 0: | |
tar_pose = tar_pose[:, :-remain, :] | |
tar_beta = tar_beta[:, :-remain, :] | |
tar_trans = tar_trans[:, :-remain, :] | |
# in_word = in_word[:, :-remain] | |
tar_exps = tar_exps[:, :-remain, :] | |
tar_contact = tar_contact[:, :-remain, :] | |
n = n - remain | |
tar_pose_jaw = tar_pose[:, :, 66:69] | |
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) | |
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) | |
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) | |
tar_pose_hands = tar_pose[:, :, 25*3:55*3] | |
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) | |
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) | |
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)] | |
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) | |
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) | |
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)] | |
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) | |
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) | |
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) | |
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) | |
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) | |
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) | |
rec_index_all_face = [] | |
rec_index_all_upper = [] | |
rec_index_all_lower = [] | |
rec_index_all_hands = [] | |
roundt = (n - args.pre_frames) // (args.pose_length - args.pre_frames) | |
remain = (n - args.pre_frames) % (args.pose_length - args.pre_frames) | |
round_l = args.pose_length - args.pre_frames | |
for i in range(0, roundt): | |
# in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+args.pre_frames] | |
# audio fps is 16000 and pose fps is 30 | |
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*args.pre_frames] | |
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+args.pre_frames] | |
mask_val = torch.ones(bs, args.pose_length, args.pose_dims+3+4).float().cuda() | |
mask_val[:, :args.pre_frames, :] = 0.0 | |
if i == 0: | |
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :] | |
else: | |
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :] | |
# print(latent_all_tmp.shape, latent_last.shape) | |
latent_all_tmp[:, :args.pre_frames, :] = latent_last[:, -args.pre_frames:, :] | |
net_out_val = model( | |
in_audio = in_audio_tmp, | |
in_word=None, #in_word_tmp, | |
mask=mask_val, | |
in_motion = latent_all_tmp, | |
in_id = in_id_tmp, | |
use_attentions=True,) | |
if args.cu != 0: | |
rec_index_upper = log_softmax(net_out_val["cls_upper"]).reshape(-1, args.vae_codebook_size) | |
_, rec_index_upper = torch.max(rec_index_upper.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) | |
#rec_upper = vq_model_upper.decode(rec_index_upper) | |
else: | |
_, rec_index_upper, _, _ = vq_model_upper.quantizer(net_out_val["rec_upper"]) | |
#rec_upper = vq_model_upper.decoder(rec_index_upper) | |
if args.cl != 0: | |
rec_index_lower = log_softmax(net_out_val["cls_lower"]).reshape(-1, args.vae_codebook_size) | |
_, rec_index_lower = torch.max(rec_index_lower.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) | |
#rec_lower = vq_model_lower.decode(rec_index_lower) | |
else: | |
_, rec_index_lower, _, _ = vq_model_lower.quantizer(net_out_val["rec_lower"]) | |
#rec_lower = vq_model_lower.decoder(rec_index_lower) | |
if args.ch != 0: | |
rec_index_hands = log_softmax(net_out_val["cls_hands"]).reshape(-1, args.vae_codebook_size) | |
_, rec_index_hands = torch.max(rec_index_hands.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) | |
#rec_hands = vq_model_hands.decode(rec_index_hands) | |
else: | |
_, rec_index_hands, _, _ = vq_model_hands.quantizer(net_out_val["rec_hands"]) | |
#rec_hands = vq_model_hands.decoder(rec_index_hands) | |
if args.cf != 0: | |
rec_index_face = log_softmax(net_out_val["cls_face"]).reshape(-1, args.vae_codebook_size) | |
_, rec_index_face = torch.max(rec_index_face.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) | |
#rec_face = vq_model_face.decoder(rec_index_face) | |
else: | |
_, rec_index_face, _, _ = vq_model_face.quantizer(net_out_val["rec_face"]) | |
#rec_face = vq_model_face.decoder(rec_index_face) | |
if i == 0: | |
rec_index_all_face.append(rec_index_face) | |
rec_index_all_upper.append(rec_index_upper) | |
rec_index_all_lower.append(rec_index_lower) | |
rec_index_all_hands.append(rec_index_hands) | |
else: | |
rec_index_all_face.append(rec_index_face[:, args.pre_frames:]) | |
rec_index_all_upper.append(rec_index_upper[:, args.pre_frames:]) | |
rec_index_all_lower.append(rec_index_lower[:, args.pre_frames:]) | |
rec_index_all_hands.append(rec_index_hands[:, args.pre_frames:]) | |
if args.cu != 0: | |
rec_upper_last = vq_model_upper.decode(rec_index_upper) | |
else: | |
rec_upper_last = vq_model_upper.decoder(rec_index_upper) | |
if args.cl != 0: | |
rec_lower_last = vq_model_lower.decode(rec_index_lower) | |
else: | |
rec_lower_last = vq_model_lower.decoder(rec_index_lower) | |
if args.ch != 0: | |
rec_hands_last = vq_model_hands.decode(rec_index_hands) | |
else: | |
rec_hands_last = vq_model_hands.decoder(rec_index_hands) | |
# if args.cf != 0: | |
# rec_face_last = vq_model_face.decode(rec_index_face) | |
# else: | |
# rec_face_last = vq_model_face.decoder(rec_index_face) | |
rec_pose_legs = rec_lower_last[:, :, :54] | |
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1] | |
rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6) | |
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)# | |
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) | |
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n) | |
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) | |
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) | |
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) | |
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n) | |
rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6) | |
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) | |
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) | |
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n) | |
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover | |
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3)) | |
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) | |
rec_trans_v_s = rec_lower_last[:, :, 54:57] | |
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1]) | |
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3]) | |
rec_y_trans = rec_trans_v_s[:,:,1:2] | |
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1) | |
latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1) | |
rec_index_face = torch.cat(rec_index_all_face, dim=1) | |
rec_index_upper = torch.cat(rec_index_all_upper, dim=1) | |
rec_index_lower = torch.cat(rec_index_all_lower, dim=1) | |
rec_index_hands = torch.cat(rec_index_all_hands, dim=1) | |
if args.cu != 0: | |
rec_upper = vq_model_upper.decode(rec_index_upper) | |
else: | |
rec_upper = vq_model_upper.decoder(rec_index_upper) | |
if args.cl != 0: | |
rec_lower = vq_model_lower.decode(rec_index_lower) | |
else: | |
rec_lower = vq_model_lower.decoder(rec_index_lower) | |
if args.ch != 0: | |
rec_hands = vq_model_hands.decode(rec_index_hands) | |
else: | |
rec_hands = vq_model_hands.decoder(rec_index_hands) | |
if args.cf != 0: | |
rec_face = vq_model_face.decode(rec_index_face) | |
else: | |
rec_face = vq_model_face.decoder(rec_index_face) | |
rec_exps = rec_face[:, :, 6:] | |
rec_pose_jaw = rec_face[:, :, :6] | |
rec_pose_legs = rec_lower[:, :, :54] | |
bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1] | |
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6) | |
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)# | |
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) | |
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n) | |
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) | |
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) | |
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6) | |
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) | |
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n) | |
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6) | |
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) | |
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) | |
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n) | |
rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6) | |
rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw) | |
rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3) | |
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover | |
rec_pose[:, 66:69] = rec_pose_jaw | |
to_global = rec_lower | |
to_global[:, :, 54:57] = 0.0 | |
to_global[:, :, :54] = rec_lower2global | |
rec_global = global_motion(to_global) | |
rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57] | |
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1]) | |
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3]) | |
rec_y_trans = rec_trans_v_s[:,:,1:2] | |
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1) | |
tar_pose = tar_pose[:, :n, :] | |
tar_exps = tar_exps[:, :n, :] | |
tar_trans = tar_trans[:, :n, :] | |
tar_beta = tar_beta[:, :n, :] | |
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3)) | |
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) | |
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3)) | |
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) | |
net_out = { | |
'rec_pose': rec_pose, | |
'rec_trans': rec_trans, | |
'tar_pose': tar_pose, | |
'tar_exps': tar_exps, | |
'tar_beta': tar_beta, | |
'tar_trans': tar_trans, | |
'rec_exps': rec_exps, | |
} | |
tar_pose = net_out['tar_pose'] | |
rec_pose = net_out['rec_pose'] | |
tar_exps = net_out['tar_exps'] | |
tar_beta = net_out['tar_beta'] | |
rec_trans = net_out['rec_trans'] | |
tar_trans = net_out['tar_trans'] | |
rec_exps = net_out['rec_exps'] | |
# print(rec_pose.shape, tar_pose.shape) | |
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints | |
# interpolate to 30fps | |
if (30/args.pose_fps) != 1: | |
assert 30%args.pose_fps == 0 | |
n *= int(30/args.pose_fps) | |
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1) | |
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1) | |
# print(rec_pose.shape, tar_pose.shape) | |
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6)) | |
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3) | |
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6)) | |
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3) | |
return tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j | |
class BaseTrainer(object): | |
def __init__(self, args, sp, ap, tp): | |
hf_dir = "hf" | |
if not os.path.exists(args.out_path + "custom/" + hf_dir + "/"): | |
os.makedirs(args.out_path + "custom/" + hf_dir + "/") | |
sf.write(args.out_path + "custom/" + hf_dir + "/tmp.wav", ap[1][:ap[0]*8], ap[0]) | |
self.audio_path = args.out_path + "custom/" + hf_dir + "/tmp.wav" | |
audio, ssr = librosa.load(self.audio_path) | |
ap = (ssr, audio) | |
self.args = args | |
self.rank = 0 # dist.get_rank() | |
#self.checkpoint_path = args.out_path + "custom/" + args.name + args.notes + "/" #wandb.run.dir #args.cache_path+args.out_path+"/"+args.name | |
self.checkpoint_path = args.out_path + "custom/" + hf_dir + "/" | |
if self.rank == 0: | |
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test", smplx_path=sp, audio_path=ap, text_path=tp) | |
self.test_loader = torch.utils.data.DataLoader( | |
self.test_data, | |
batch_size=1, | |
shuffle=False, | |
num_workers=args.loader_workers, | |
drop_last=False, | |
) | |
logger.info(f"Init test dataloader success") | |
model_module = __import__(f"models.{args.model}", fromlist=["something"]) | |
if args.ddp: | |
self.model = getattr(model_module, args.g_name)(args).to(self.rank) | |
process_group = torch.distributed.new_group() | |
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group) | |
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank, | |
broadcast_buffers=False, find_unused_parameters=False) | |
else: | |
self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cpu() | |
if self.rank == 0: | |
logger.info(self.model) | |
logger.info(f"init {args.g_name} success") | |
self.smplx = smplx.create( | |
self.args.data_path_1+"smplx_models/", | |
model_type='smplx', | |
gender='NEUTRAL_2020', | |
use_face_contour=False, | |
num_betas=300, | |
num_expression_coeffs=100, | |
ext='npz', | |
use_pca=False, | |
) | |
self.args = args | |
self.joints = self.test_data.joints | |
self.ori_joint_list = joints_list[self.args.ori_joints] | |
self.tar_joint_list_face = joints_list["beat_smplx_face"] | |
self.tar_joint_list_upper = joints_list["beat_smplx_upper"] | |
self.tar_joint_list_hands = joints_list["beat_smplx_hands"] | |
self.tar_joint_list_lower = joints_list["beat_smplx_lower"] | |
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
self.joints = 55 | |
for joint_name in self.tar_joint_list_face: | |
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
for joint_name in self.tar_joint_list_upper: | |
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
for joint_name in self.tar_joint_list_hands: | |
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
for joint_name in self.tar_joint_list_lower: | |
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.tracker = other_tools_hf.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False]) | |
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"]) | |
self.args.vae_layer = 2 | |
self.args.vae_length = 256 | |
self.args.vae_test_dim = 106 | |
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() | |
# print(self.vq_model_face) | |
# other_tools_hf.load_checkpoints(self.vq_model_face, self.args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name) | |
self.args.vae_test_dim = 78 | |
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() | |
# other_tools_hf.load_checkpoints(self.vq_model_upper, self.args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name) | |
self.args.vae_test_dim = 180 | |
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() | |
# other_tools_hf.load_checkpoints(self.vq_model_hands, self.args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name) | |
self.args.vae_test_dim = 61 | |
self.args.vae_layer = 4 | |
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() | |
# other_tools_hf.load_checkpoints(self.vq_model_lower, self.args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name) | |
self.args.vae_test_dim = 61 | |
self.args.vae_layer = 4 | |
self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).cpu() | |
# other_tools_hf.load_checkpoints(self.global_motion, self.args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name) | |
self.args.vae_test_dim = 330 | |
self.args.vae_layer = 4 | |
self.args.vae_length = 240 | |
# self.cls_loss = nn.NLLLoss().to(self.rank) | |
# self.reclatent_loss = nn.MSELoss().to(self.rank) | |
# self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank) | |
# self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank) | |
self.log_softmax = nn.LogSoftmax(dim=2) | |
def inverse_selection(self, filtered_t, selection_array, n): | |
original_shape_t = np.zeros((n, selection_array.size)) | |
selected_indices = np.where(selection_array == 1)[0] | |
for i in range(n): | |
original_shape_t[i, selected_indices] = filtered_t[i] | |
return original_shape_t | |
def inverse_selection_tensor(self, filtered_t, selection_array, n): | |
selection_array = torch.from_numpy(selection_array).cuda() | |
original_shape_t = torch.zeros((n, 165)).cuda() | |
selected_indices = torch.where(selection_array == 1)[0] | |
for i in range(n): | |
original_shape_t[i, selected_indices] = filtered_t[i] | |
return original_shape_t | |
def test_demo(self, epoch): | |
''' | |
input audio and text, output motion | |
do not calculate loss and metric | |
save video | |
''' | |
results_save_path = self.checkpoint_path + f"/{epoch}/" | |
if os.path.exists(results_save_path): | |
import shutil | |
shutil.rmtree(results_save_path) | |
os.makedirs(results_save_path) | |
start_time = time.time() | |
total_length = 0 | |
test_seq_list = self.test_data.selected_file | |
align = 0 | |
latent_out = [] | |
latent_ori = [] | |
l2_all = 0 | |
lvel = 0 | |
for its, batch_data in enumerate(self.test_loader): | |
tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j = test_demo_gpu( | |
self.model, self.vq_model_face, self.vq_model_upper, self.vq_model_hands, self.vq_model_lower, self.global_motion, self.smplx, | |
batch_data, | |
self.args, | |
self.joints, self.joint_mask_upper, self.joint_mask_lower, self.joint_mask_hands, | |
self.log_softmax, | |
) | |
tar_pose_np = tar_pose.detach().cpu().numpy() | |
rec_pose_np = rec_pose.detach().cpu().numpy() | |
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3) | |
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100) | |
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) | |
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3) | |
#''' | |
# its = 0 | |
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True) | |
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', | |
betas=gt_npz["betas"], | |
poses=tar_pose_np, | |
expressions=tar_exp_np, | |
trans=tar_trans_np, | |
model='smplx2020', | |
gender='neutral', | |
mocap_frame_rate = 30, | |
) | |
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', | |
betas=gt_npz["betas"], | |
poses=rec_pose_np, | |
expressions=rec_exp_np, | |
trans=rec_trans_np, | |
model='smplx2020', | |
gender='neutral', | |
mocap_frame_rate = 30, | |
) | |
total_length += n | |
render_vid_path = other_tools_hf.render_one_sequence_no_gt( | |
results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', | |
# results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', | |
results_save_path, | |
self.audio_path, | |
self.args.data_path_1+"smplx_models/", | |
use_matplotlib = False, | |
args = self.args, | |
) | |
result = gr.Video(value=render_vid_path, visible=True) | |
end_time = time.time() - start_time | |
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion") | |
return result | |
def emage(audio_path): | |
smplx_path = None | |
text_path = None | |
rank = 0 | |
world_size = 1 | |
args = config.parse_args() | |
#os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/" | |
if not sys.warnoptions: | |
warnings.simplefilter("ignore") | |
# dist.init_process_group(backend="gloo", rank=rank, world_size=world_size) | |
#logger_tools.set_args_and_logger(args, rank) | |
other_tools_hf.set_random_seed(args) | |
other_tools_hf.print_exp_info(args) | |
# return one intance of trainer | |
trainer = BaseTrainer(args, sp = smplx_path, ap = audio_path, tp = text_path) | |
result = trainer.test_demo(999) | |
return result | |
examples = [ | |
["./EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav"], | |
["./EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav"], | |
["./EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav"], | |
] | |
demo = gr.Interface( | |
emage, # function | |
inputs=[ | |
# gr.File(label="Please upload SMPL-X file with npz format here.", file_types=["npz", "NPZ"]), | |
gr.Audio(), | |
# gr.File(label="Please upload textgrid format file here.", file_types=["TextGrid", "Textgrid", "textgrid"]) | |
], # input type | |
outputs=gr.Video(format="mp4", visible=True), | |
title='\ | |
<div align="center">\ | |
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling <br/>\ | |
CVPR 2024 <br/>\ | |
</div>', | |
description='\ | |
<div align="center">\ | |
Haiyang Liu1*, Zihao Zhu2*, Giorgio Becherini3, Yichen Peng4, Mingyang Su5,<br/>\ | |
You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo Zheng, Michael J. Black3 <br/>\ | |
(*Equal Contribution) <br/>\ | |
1The University of Tokyo, 2Keio University, 4Japan Advanced Institute of Science and Technology, <br/>\ | |
3Max Planck Institute for Intelligent Systems, 5Tsinghua University <br/>\ | |
</div>\ | |
', | |
article="\ | |
Due to the limited resources in this space, we process the first 8s of your uploaded audio. <br/>\ | |
Try to develop this space locally for longer motion generation, e.g., 60s. <br/>\ | |
Relevant links: [Project Page (https://pantomatrix.github.io/EMAGE/)\ | |
", | |
examples=examples, | |
) | |
if __name__ == "__main__": | |
os.environ["MASTER_ADDR"]='127.0.0.1' | |
os.environ["MASTER_PORT"]='8675' | |
#os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" | |
demo.launch(share=True) |