# Dataset settings dataset = dict( type="VariableVideoTextDataset", transform_name="resize_crop", ) bucket_config = { # 2s/it "144p": {1: (0.5, 48), 34: (1.0, 2), 51: (1.0, 4), 102: (1.0, 2), 204: (1.0, 1)}, # --- "256": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)}, "240p": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)}, # --- "360p": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)}, "512": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)}, # --- "480p": {1: (0.2, 4), 17: (0.3, 1), 68: (0.0, None)}, # --- "720p": {1: (0.1, 2)}, "1024": {1: (0.1, 2)}, # --- "1080p": {1: (0.1, 1)}, } grad_checkpoint = False # Acceleration settings num_workers = 8 num_bucket_build_workers = 16 dtype = "bf16" plugin = "zero2" # Model settings model = dict( type="STDiT3-XL/2", from_pretrained=None, qk_norm=True, enable_flash_attn=True, enable_layernorm_kernel=True, ) vae = dict( type="OpenSoraVAE_V1_2", from_pretrained="pretrained_models/vae-pipeline", micro_frame_size=17, micro_batch_size=4, ) text_encoder = dict( type="t5", from_pretrained="DeepFloyd/t5-v1_1-xxl", model_max_length=300, shardformer=True, local_files_only=True, ) scheduler = dict( type="rflow", use_timestep_transform=True, sample_method="logit-normal", ) # Mask settings mask_ratios = { "random": 0.2, "intepolate": 0.01, "quarter_random": 0.01, "quarter_head": 0.01, "quarter_tail": 0.01, "quarter_head_tail": 0.01, "image_random": 0.05, "image_head": 0.1, "image_tail": 0.05, "image_head_tail": 0.05, } # Log settings seed = 42 outputs = "outputs" wandb = False epochs = 1000 log_every = 10 ckpt_every = 500 # optimization settings load = None grad_clip = 1.0 lr = 1e-4 ema_decay = 0.99 adam_eps = 1e-15