from dataclasses import dataclass, field from typing import Dict, List, Tuple import numpy as np import torch from coqpit import Coqpit from torch import nn from torch.nn.utils.parametrizations import weight_norm from torch.nn.utils.parametrize import remove_parametrizations from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from trainer.trainer_utils import get_optimizer, get_scheduler from TTS.utils.io import load_fsspec from TTS.vocoder.datasets import WaveGradDataset from TTS.vocoder.layers.wavegrad import Conv1d, DBlock, FiLM, UBlock from TTS.vocoder.models.base_vocoder import BaseVocoder from TTS.vocoder.utils.generic_utils import plot_results @dataclass class WavegradArgs(Coqpit): in_channels: int = 80 out_channels: int = 1 use_weight_norm: bool = False y_conv_channels: int = 32 x_conv_channels: int = 768 dblock_out_channels: List[int] = field(default_factory=lambda: [128, 128, 256, 512]) ublock_out_channels: List[int] = field(default_factory=lambda: [512, 512, 256, 128, 128]) upsample_factors: List[int] = field(default_factory=lambda: [4, 4, 4, 2, 2]) upsample_dilations: List[List[int]] = field( default_factory=lambda: [[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]] ) class Wavegrad(BaseVocoder): """🐸 🌊 WaveGrad 🌊 model. Paper - https://arxiv.org/abs/2009.00713 Examples: Initializing the model. >>> from TTS.vocoder.configs import WavegradConfig >>> config = WavegradConfig() >>> model = Wavegrad(config) Paper Abstract: This paper introduces WaveGrad, a conditional model for waveform generation which estimates gradients of the data density. The model is built on prior work on score matching and diffusion probabilistic models. It starts from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned on the mel-spectrogram. WaveGrad offers a natural way to trade inference speed for sample quality by adjusting the number of refinement steps, and bridges the gap between non-autoregressive and autoregressive models in terms of audio quality. We find that it can generate high fidelity audio samples using as few as six iterations. Experiments reveal WaveGrad to generate high fidelity audio, outperforming adversarial non-autoregressive baselines and matching a strong likelihood-based autoregressive baseline using fewer sequential operations. Audio samples are available at this https URL. """ # pylint: disable=dangerous-default-value def __init__(self, config: Coqpit): super().__init__(config) self.config = config self.use_weight_norm = config.model_params.use_weight_norm self.hop_len = np.prod(config.model_params.upsample_factors) self.noise_level = None self.num_steps = None self.beta = None self.alpha = None self.alpha_hat = None self.c1 = None self.c2 = None self.sigma = None # dblocks self.y_conv = Conv1d(1, config.model_params.y_conv_channels, 5, padding=2) self.dblocks = nn.ModuleList([]) ic = config.model_params.y_conv_channels for oc, df in zip(config.model_params.dblock_out_channels, reversed(config.model_params.upsample_factors)): self.dblocks.append(DBlock(ic, oc, df)) ic = oc # film self.film = nn.ModuleList([]) ic = config.model_params.y_conv_channels for oc in reversed(config.model_params.ublock_out_channels): self.film.append(FiLM(ic, oc)) ic = oc # ublocksn self.ublocks = nn.ModuleList([]) ic = config.model_params.x_conv_channels for oc, uf, ud in zip( config.model_params.ublock_out_channels, config.model_params.upsample_factors, config.model_params.upsample_dilations, ): self.ublocks.append(UBlock(ic, oc, uf, ud)) ic = oc self.x_conv = Conv1d(config.model_params.in_channels, config.model_params.x_conv_channels, 3, padding=1) self.out_conv = Conv1d(oc, config.model_params.out_channels, 3, padding=1) if config.model_params.use_weight_norm: self.apply_weight_norm() def forward(self, x, spectrogram, noise_scale): shift_and_scale = [] x = self.y_conv(x) shift_and_scale.append(self.film[0](x, noise_scale)) for film, layer in zip(self.film[1:], self.dblocks): x = layer(x) shift_and_scale.append(film(x, noise_scale)) x = self.x_conv(spectrogram) for layer, (film_shift, film_scale) in zip(self.ublocks, reversed(shift_and_scale)): x = layer(x, film_shift, film_scale) x = self.out_conv(x) return x def load_noise_schedule(self, path): beta = np.load(path, allow_pickle=True).item()["beta"] # pylint: disable=unexpected-keyword-arg self.compute_noise_level(beta) @torch.no_grad() def inference(self, x, y_n=None): """ Shapes: x: :math:`[B, C , T]` y_n: :math:`[B, 1, T]` """ if y_n is None: y_n = torch.randn(x.shape[0], 1, self.hop_len * x.shape[-1]) else: y_n = torch.FloatTensor(y_n).unsqueeze(0).unsqueeze(0) y_n = y_n.type_as(x) sqrt_alpha_hat = self.noise_level.to(x) for n in range(len(self.alpha) - 1, -1, -1): y_n = self.c1[n] * (y_n - self.c2[n] * self.forward(y_n, x, sqrt_alpha_hat[n].repeat(x.shape[0]))) if n > 0: z = torch.randn_like(y_n) y_n += self.sigma[n - 1] * z y_n.clamp_(-1.0, 1.0) return y_n def compute_y_n(self, y_0): """Compute noisy audio based on noise schedule""" self.noise_level = self.noise_level.to(y_0) if len(y_0.shape) == 3: y_0 = y_0.squeeze(1) s = torch.randint(0, self.num_steps - 1, [y_0.shape[0]]) l_a, l_b = self.noise_level[s], self.noise_level[s + 1] noise_scale = l_a + torch.rand(y_0.shape[0]).to(y_0) * (l_b - l_a) noise_scale = noise_scale.unsqueeze(1) noise = torch.randn_like(y_0) noisy_audio = noise_scale * y_0 + (1.0 - noise_scale**2) ** 0.5 * noise return noise.unsqueeze(1), noisy_audio.unsqueeze(1), noise_scale[:, 0] def compute_noise_level(self, beta): """Compute noise schedule parameters""" self.num_steps = len(beta) alpha = 1 - beta alpha_hat = np.cumprod(alpha) noise_level = np.concatenate([[1.0], alpha_hat**0.5], axis=0) noise_level = alpha_hat**0.5 # pylint: disable=not-callable self.beta = torch.tensor(beta.astype(np.float32)) self.alpha = torch.tensor(alpha.astype(np.float32)) self.alpha_hat = torch.tensor(alpha_hat.astype(np.float32)) self.noise_level = torch.tensor(noise_level.astype(np.float32)) self.c1 = 1 / self.alpha**0.5 self.c2 = (1 - self.alpha) / (1 - self.alpha_hat) ** 0.5 self.sigma = ((1.0 - self.alpha_hat[:-1]) / (1.0 - self.alpha_hat[1:]) * self.beta[1:]) ** 0.5 def remove_weight_norm(self): for _, layer in enumerate(self.dblocks): if len(layer.state_dict()) != 0: try: remove_parametrizations(layer, "weight") except ValueError: layer.remove_weight_norm() for _, layer in enumerate(self.film): if len(layer.state_dict()) != 0: try: remove_parametrizations(layer, "weight") except ValueError: layer.remove_weight_norm() for _, layer in enumerate(self.ublocks): if len(layer.state_dict()) != 0: try: remove_parametrizations(layer, "weight") except ValueError: layer.remove_weight_norm() remove_parametrizations(self.x_conv, "weight") remove_parametrizations(self.out_conv, "weight") remove_parametrizations(self.y_conv, "weight") def apply_weight_norm(self): for _, layer in enumerate(self.dblocks): if len(layer.state_dict()) != 0: layer.apply_weight_norm() for _, layer in enumerate(self.film): if len(layer.state_dict()) != 0: layer.apply_weight_norm() for _, layer in enumerate(self.ublocks): if len(layer.state_dict()) != 0: layer.apply_weight_norm() self.x_conv = weight_norm(self.x_conv) self.out_conv = weight_norm(self.out_conv) self.y_conv = weight_norm(self.y_conv) def load_checkpoint( self, config, checkpoint_path, eval=False, cache=False ): # pylint: disable=unused-argument, redefined-builtin state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) self.load_state_dict(state["model"]) if eval: self.eval() assert not self.training if self.config.model_params.use_weight_norm: self.remove_weight_norm() betas = np.linspace( config["test_noise_schedule"]["min_val"], config["test_noise_schedule"]["max_val"], config["test_noise_schedule"]["num_steps"], ) self.compute_noise_level(betas) else: betas = np.linspace( config["train_noise_schedule"]["min_val"], config["train_noise_schedule"]["max_val"], config["train_noise_schedule"]["num_steps"], ) self.compute_noise_level(betas) def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: # format data x = batch["input"] y = batch["waveform"] # set noise scale noise, x_noisy, noise_scale = self.compute_y_n(y) # forward pass noise_hat = self.forward(x_noisy, x, noise_scale) # compute losses loss = criterion(noise, noise_hat) return {"model_output": noise_hat}, {"loss": loss} def train_log( # pylint: disable=no-self-use self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument ) -> Tuple[Dict, np.ndarray]: pass @torch.no_grad() def eval_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]: return self.train_step(batch, criterion) def eval_log( # pylint: disable=no-self-use self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument ) -> None: pass def test(self, assets: Dict, test_loader: "DataLoader", outputs=None): # pylint: disable=unused-argument # setup noise schedule and inference ap = assets["audio_processor"] noise_schedule = self.config["test_noise_schedule"] betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"]) self.compute_noise_level(betas) samples = test_loader.dataset.load_test_samples(1) for sample in samples: x = sample[0] x = x[None, :, :].to(next(self.parameters()).device) y = sample[1] y = y[None, :] # compute voice y_pred = self.inference(x) # compute spectrograms figures = plot_results(y_pred, y, ap, "test") # Sample audio sample_voice = y_pred[0].squeeze(0).detach().cpu().numpy() return figures, {"test/audio": sample_voice} def get_optimizer(self): return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self) def get_scheduler(self, optimizer): return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, optimizer) @staticmethod def get_criterion(): return torch.nn.L1Loss() @staticmethod def format_batch(batch: Dict) -> Dict: # return a whole audio segment m, y = batch[0], batch[1] y = y.unsqueeze(1) return {"input": m, "waveform": y} def get_data_loader(self, config: Coqpit, assets: Dict, is_eval: True, samples: List, verbose: bool, num_gpus: int): ap = assets["audio_processor"] dataset = WaveGradDataset( ap=ap, items=samples, seq_len=self.config.seq_len, hop_len=ap.hop_length, pad_short=self.config.pad_short, conv_pad=self.config.conv_pad, is_training=not is_eval, return_segments=True, use_noise_augment=False, use_cache=config.use_cache, verbose=verbose, ) sampler = DistributedSampler(dataset) if num_gpus > 1 else None loader = DataLoader( dataset, batch_size=self.config.batch_size, shuffle=num_gpus <= 1, drop_last=False, sampler=sampler, num_workers=self.config.num_eval_loader_workers if is_eval else self.config.num_loader_workers, pin_memory=False, ) return loader def on_epoch_start(self, trainer): # pylint: disable=unused-argument noise_schedule = self.config["train_noise_schedule"] betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"]) self.compute_noise_level(betas) @staticmethod def init_from_config(config: "WavegradConfig"): return Wavegrad(config)