import numpy as np import torch import torch.nn.functional as F from scipy import signal as sig # adapted from # https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan class PQMF(torch.nn.Module): def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0): super().__init__() self.N = N self.taps = taps self.cutoff = cutoff self.beta = beta QMF = sig.firwin(taps + 1, cutoff, window=("kaiser", beta)) H = np.zeros((N, len(QMF))) G = np.zeros((N, len(QMF))) for k in range(N): constant_factor = ( (2 * k + 1) * (np.pi / (2 * N)) * (np.arange(taps + 1) - ((taps - 1) / 2)) ) # TODO: (taps - 1) -> taps phase = (-1) ** k * np.pi / 4 H[k] = 2 * QMF * np.cos(constant_factor + phase) G[k] = 2 * QMF * np.cos(constant_factor - phase) H = torch.from_numpy(H[:, None, :]).float() G = torch.from_numpy(G[None, :, :]).float() self.register_buffer("H", H) self.register_buffer("G", G) updown_filter = torch.zeros((N, N, N)).float() for k in range(N): updown_filter[k, k, 0] = 1.0 self.register_buffer("updown_filter", updown_filter) self.N = N self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0) def forward(self, x): return self.analysis(x) def analysis(self, x): return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N) def synthesis(self, x): x = F.conv_transpose1d(x, self.updown_filter * self.N, stride=self.N) x = F.conv1d(x, self.G, padding=self.taps // 2) return x