# coding: utf-8 # adapted from https://github.com/r9y9/tacotron_pytorch import torch from torch import nn from .attentions import init_attn from .common_layers import Prenet class BatchNormConv1d(nn.Module): r"""A wrapper for Conv1d with BatchNorm. It sets the activation function between Conv and BatchNorm layers. BatchNorm layer is initialized with the TF default values for momentum and eps. Args: in_channels: size of each input sample out_channels: size of each output samples kernel_size: kernel size of conv filters stride: stride of conv filters padding: padding of conv filters activation: activation function set b/w Conv1d and BatchNorm Shapes: - input: (B, D) - output: (B, D) """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activation=None): super().__init__() self.padding = padding self.padder = nn.ConstantPad1d(padding, 0) self.conv1d = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0, bias=False ) # Following tensorflow's default parameters self.bn = nn.BatchNorm1d(out_channels, momentum=0.99, eps=1e-3) self.activation = activation # self.init_layers() def init_layers(self): if isinstance(self.activation, torch.nn.ReLU): w_gain = "relu" elif isinstance(self.activation, torch.nn.Tanh): w_gain = "tanh" elif self.activation is None: w_gain = "linear" else: raise RuntimeError("Unknown activation function") torch.nn.init.xavier_uniform_(self.conv1d.weight, gain=torch.nn.init.calculate_gain(w_gain)) def forward(self, x): x = self.padder(x) x = self.conv1d(x) x = self.bn(x) if self.activation is not None: x = self.activation(x) return x class Highway(nn.Module): r"""Highway layers as explained in https://arxiv.org/abs/1505.00387 Args: in_features (int): size of each input sample out_feature (int): size of each output sample Shapes: - input: (B, *, H_in) - output: (B, *, H_out) """ # TODO: Try GLU layer def __init__(self, in_features, out_feature): super().__init__() self.H = nn.Linear(in_features, out_feature) self.H.bias.data.zero_() self.T = nn.Linear(in_features, out_feature) self.T.bias.data.fill_(-1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() # self.init_layers() def init_layers(self): torch.nn.init.xavier_uniform_(self.H.weight, gain=torch.nn.init.calculate_gain("relu")) torch.nn.init.xavier_uniform_(self.T.weight, gain=torch.nn.init.calculate_gain("sigmoid")) def forward(self, inputs): H = self.relu(self.H(inputs)) T = self.sigmoid(self.T(inputs)) return H * T + inputs * (1.0 - T) class CBHG(nn.Module): """CBHG module: a recurrent neural network composed of: - 1-d convolution banks - Highway networks + residual connections - Bidirectional gated recurrent units Args: in_features (int): sample size K (int): max filter size in conv bank projections (list): conv channel sizes for conv projections num_highways (int): number of highways layers Shapes: - input: (B, C, T_in) - output: (B, T_in, C*2) """ # pylint: disable=dangerous-default-value def __init__( self, in_features, K=16, conv_bank_features=128, conv_projections=[128, 128], highway_features=128, gru_features=128, num_highways=4, ): super().__init__() self.in_features = in_features self.conv_bank_features = conv_bank_features self.highway_features = highway_features self.gru_features = gru_features self.conv_projections = conv_projections self.relu = nn.ReLU() # list of conv1d bank with filter size k=1...K # TODO: try dilational layers instead self.conv1d_banks = nn.ModuleList( [ BatchNormConv1d( in_features, conv_bank_features, kernel_size=k, stride=1, padding=[(k - 1) // 2, k // 2], activation=self.relu, ) for k in range(1, K + 1) ] ) # max pooling of conv bank, with padding # TODO: try average pooling OR larger kernel size out_features = [K * conv_bank_features] + conv_projections[:-1] activations = [self.relu] * (len(conv_projections) - 1) activations += [None] # setup conv1d projection layers layer_set = [] for in_size, out_size, ac in zip(out_features, conv_projections, activations): layer = BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1, padding=[1, 1], activation=ac) layer_set.append(layer) self.conv1d_projections = nn.ModuleList(layer_set) # setup Highway layers if self.highway_features != conv_projections[-1]: self.pre_highway = nn.Linear(conv_projections[-1], highway_features, bias=False) self.highways = nn.ModuleList([Highway(highway_features, highway_features) for _ in range(num_highways)]) # bi-directional GPU layer self.gru = nn.GRU(gru_features, gru_features, 1, batch_first=True, bidirectional=True) def forward(self, inputs): # (B, in_features, T_in) x = inputs # (B, hid_features*K, T_in) # Concat conv1d bank outputs outs = [] for conv1d in self.conv1d_banks: out = conv1d(x) outs.append(out) x = torch.cat(outs, dim=1) assert x.size(1) == self.conv_bank_features * len(self.conv1d_banks) for conv1d in self.conv1d_projections: x = conv1d(x) x += inputs x = x.transpose(1, 2) if self.highway_features != self.conv_projections[-1]: x = self.pre_highway(x) # Residual connection # TODO: try residual scaling as in Deep Voice 3 # TODO: try plain residual layers for highway in self.highways: x = highway(x) # (B, T_in, hid_features*2) # TODO: replace GRU with convolution as in Deep Voice 3 self.gru.flatten_parameters() outputs, _ = self.gru(x) return outputs class EncoderCBHG(nn.Module): r"""CBHG module with Encoder specific arguments""" def __init__(self): super().__init__() self.cbhg = CBHG( 128, K=16, conv_bank_features=128, conv_projections=[128, 128], highway_features=128, gru_features=128, num_highways=4, ) def forward(self, x): return self.cbhg(x) class Encoder(nn.Module): r"""Stack Prenet and CBHG module for encoder Args: inputs (FloatTensor): embedding features Shapes: - inputs: (B, T, D_in) - outputs: (B, T, 128 * 2) """ def __init__(self, in_features): super().__init__() self.prenet = Prenet(in_features, out_features=[256, 128]) self.cbhg = EncoderCBHG() def forward(self, inputs): # B x T x prenet_dim outputs = self.prenet(inputs) outputs = self.cbhg(outputs.transpose(1, 2)) return outputs class PostCBHG(nn.Module): def __init__(self, mel_dim): super().__init__() self.cbhg = CBHG( mel_dim, K=8, conv_bank_features=128, conv_projections=[256, mel_dim], highway_features=128, gru_features=128, num_highways=4, ) def forward(self, x): return self.cbhg(x) class Decoder(nn.Module): """Tacotron decoder. Args: in_channels (int): number of input channels. frame_channels (int): number of feature frame channels. r (int): number of outputs per time step (reduction rate). memory_size (int): size of the past window. if <= 0 memory_size = r attn_type (string): type of attention used in decoder. attn_windowing (bool): if true, define an attention window centered to maximum attention response. It provides more robust attention alignment especially at interence time. attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'. prenet_type (string): 'original' or 'bn'. prenet_dropout (float): prenet dropout rate. forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736 trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736 forward_attn_mask (bool): if true, mask attention values smaller than a threshold. location_attn (bool): if true, use location sensitive attention. attn_K (int): number of attention heads for GravesAttention. separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow. d_vector_dim (int): size of speaker embedding vector, for multi-speaker training. max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 500. """ # Pylint gets confused by PyTorch conventions here # pylint: disable=attribute-defined-outside-init def __init__( self, in_channels, frame_channels, r, memory_size, attn_type, attn_windowing, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, max_decoder_steps, ): super().__init__() self.r_init = r self.r = r self.in_channels = in_channels self.max_decoder_steps = max_decoder_steps self.use_memory_queue = memory_size > 0 self.memory_size = memory_size if memory_size > 0 else r self.frame_channels = frame_channels self.separate_stopnet = separate_stopnet self.query_dim = 256 # memory -> |Prenet| -> processed_memory prenet_dim = frame_channels * self.memory_size if self.use_memory_queue else frame_channels self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[256, 128]) # processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State # attention_rnn generates queries for the attention mechanism self.attention_rnn = nn.GRUCell(in_channels + 128, self.query_dim) self.attention = init_attn( attn_type=attn_type, query_dim=self.query_dim, embedding_dim=in_channels, attention_dim=128, location_attention=location_attn, attention_location_n_filters=32, attention_location_kernel_size=31, windowing=attn_windowing, norm=attn_norm, forward_attn=forward_attn, trans_agent=trans_agent, forward_attn_mask=forward_attn_mask, attn_K=attn_K, ) # (processed_memory | attention context) -> |Linear| -> decoder_RNN_input self.project_to_decoder_in = nn.Linear(256 + in_channels, 256) # decoder_RNN_input -> |RNN| -> RNN_state self.decoder_rnns = nn.ModuleList([nn.GRUCell(256, 256) for _ in range(2)]) # RNN_state -> |Linear| -> mel_spec self.proj_to_mel = nn.Linear(256, frame_channels * self.r_init) # learn init values instead of zero init. self.stopnet = StopNet(256 + frame_channels * self.r_init) def set_r(self, new_r): self.r = new_r def _reshape_memory(self, memory): """ Reshape the spectrograms for given 'r' """ # Grouping multiple frames if necessary if memory.size(-1) == self.frame_channels: memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) # Time first (T_decoder, B, frame_channels) memory = memory.transpose(0, 1) return memory def _init_states(self, inputs): """ Initialization of decoder states """ B = inputs.size(0) # go frame as zeros matrix if self.use_memory_queue: self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.memory_size) else: self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels) # decoder states self.attention_rnn_hidden = torch.zeros(1, device=inputs.device).repeat(B, 256) self.decoder_rnn_hiddens = [ torch.zeros(1, device=inputs.device).repeat(B, 256) for idx in range(len(self.decoder_rnns)) ] self.context_vec = inputs.data.new(B, self.in_channels).zero_() # cache attention inputs self.processed_inputs = self.attention.preprocess_inputs(inputs) def _parse_outputs(self, outputs, attentions, stop_tokens): # Back to batch first attentions = torch.stack(attentions).transpose(0, 1) stop_tokens = torch.stack(stop_tokens).transpose(0, 1) outputs = torch.stack(outputs).transpose(0, 1).contiguous() outputs = outputs.view(outputs.size(0), -1, self.frame_channels) outputs = outputs.transpose(1, 2) return outputs, attentions, stop_tokens def decode(self, inputs, mask=None): # Prenet processed_memory = self.prenet(self.memory_input) # Attention RNN self.attention_rnn_hidden = self.attention_rnn( torch.cat((processed_memory, self.context_vec), -1), self.attention_rnn_hidden ) self.context_vec = self.attention(self.attention_rnn_hidden, inputs, self.processed_inputs, mask) # Concat RNN output and attention context vector decoder_input = self.project_to_decoder_in(torch.cat((self.attention_rnn_hidden, self.context_vec), -1)) # Pass through the decoder RNNs for idx, decoder_rnn in enumerate(self.decoder_rnns): self.decoder_rnn_hiddens[idx] = decoder_rnn(decoder_input, self.decoder_rnn_hiddens[idx]) # Residual connection decoder_input = self.decoder_rnn_hiddens[idx] + decoder_input decoder_output = decoder_input # predict mel vectors from decoder vectors output = self.proj_to_mel(decoder_output) # output = torch.sigmoid(output) # predict stop token stopnet_input = torch.cat([decoder_output, output], -1) if self.separate_stopnet: stop_token = self.stopnet(stopnet_input.detach()) else: stop_token = self.stopnet(stopnet_input) output = output[:, : self.r * self.frame_channels] return output, stop_token, self.attention.attention_weights def _update_memory_input(self, new_memory): if self.use_memory_queue: if self.memory_size > self.r: # memory queue size is larger than number of frames per decoder iter self.memory_input = torch.cat( [new_memory, self.memory_input[:, : (self.memory_size - self.r) * self.frame_channels].clone()], dim=-1, ) else: # memory queue size smaller than number of frames per decoder iter self.memory_input = new_memory[:, : self.memory_size * self.frame_channels] else: # use only the last frame prediction # assert new_memory.shape[-1] == self.r * self.frame_channels self.memory_input = new_memory[:, self.frame_channels * (self.r - 1) :] def forward(self, inputs, memory, mask): """ Args: inputs: Encoder outputs. memory: Decoder memory (autoregression. If None (at eval-time), decoder outputs are used as decoder inputs. If None, it uses the last output as the input. mask: Attention mask for sequence padding. Shapes: - inputs: (B, T, D_out_enc) - memory: (B, T_mel, D_mel) """ # Run greedy decoding if memory is None memory = self._reshape_memory(memory) outputs = [] attentions = [] stop_tokens = [] t = 0 self._init_states(inputs) self.attention.init_states(inputs) while len(outputs) < memory.size(0): if t > 0: new_memory = memory[t - 1] self._update_memory_input(new_memory) output, stop_token, attention = self.decode(inputs, mask) outputs += [output] attentions += [attention] stop_tokens += [stop_token.squeeze(1)] t += 1 return self._parse_outputs(outputs, attentions, stop_tokens) def inference(self, inputs): """ Args: inputs: encoder outputs. Shapes: - inputs: batch x time x encoder_out_dim """ outputs = [] attentions = [] stop_tokens = [] t = 0 self._init_states(inputs) self.attention.init_states(inputs) while True: if t > 0: new_memory = outputs[-1] self._update_memory_input(new_memory) output, stop_token, attention = self.decode(inputs, None) stop_token = torch.sigmoid(stop_token.data) outputs += [output] attentions += [attention] stop_tokens += [stop_token] t += 1 if t > inputs.shape[1] / 4 and (stop_token > 0.6 or attention[:, -1].item() > 0.6): break if t > self.max_decoder_steps: print(" | > Decoder stopped with 'max_decoder_steps") break return self._parse_outputs(outputs, attentions, stop_tokens) class StopNet(nn.Module): r"""Stopnet signalling decoder to stop inference. Args: in_features (int): feature dimension of input. """ def __init__(self, in_features): super().__init__() self.dropout = nn.Dropout(0.1) self.linear = nn.Linear(in_features, 1) torch.nn.init.xavier_uniform_(self.linear.weight, gain=torch.nn.init.calculate_gain("linear")) def forward(self, inputs): outputs = self.dropout(inputs) outputs = self.linear(outputs) return outputs