#!/usr/bin/env python3 import pysqlite3 as sqlite3 import os # single thread doubles cuda performance os.environ['OMP_NUM_THREADS'] = '1' # reduce tensorflow log level os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import sys import warnings from typing import List import platform import signal import shutil import argparse import onnxruntime import tensorflow import DeepFakeAI.choices import DeepFakeAI.globals from DeepFakeAI import wording, metadata from DeepFakeAI.predictor import predict_image, predict_video from DeepFakeAI.processors.frame.core import get_frame_processors_modules from DeepFakeAI.utilities import is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clear_temp, normalize_output_path, list_module_names, decode_execution_providers, encode_execution_providers warnings.filterwarnings('ignore', category = FutureWarning, module = 'insightface') warnings.filterwarnings('ignore', category = UserWarning, module = 'torchvision') def parse_args() -> None: signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) program = argparse.ArgumentParser(formatter_class = lambda prog: argparse.HelpFormatter(prog, max_help_position = 120)) program.add_argument('-s', '--source', help = wording.get('source_help'), dest = 'source_path') program.add_argument('-t', '--target', help = wording.get('target_help'), dest = 'target_path') program.add_argument('-o', '--output', help = wording.get('output_help'), dest = 'output_path') program.add_argument('--frame-processors', help = wording.get('frame_processors_help').format(choices = ', '.join(list_module_names('DeepFakeAI/processors/frame/modules'))), dest = 'frame_processors', default = ['face_swapper'], nargs='+') program.add_argument('--ui-layouts', help = wording.get('ui_layouts_help').format(choices = ', '.join(list_module_names('DeepFakeAI/uis/layouts'))), dest = 'ui_layouts', default = ['default'], nargs='+') program.add_argument('--keep-fps', help = wording.get('keep_fps_help'), dest = 'keep_fps', action='store_true') program.add_argument('--keep-temp', help = wording.get('keep_temp_help'), dest = 'keep_temp', action='store_true') program.add_argument('--skip-audio', help = wording.get('skip_audio_help'), dest = 'skip_audio', action='store_true') program.add_argument('--face-recognition', help = wording.get('face_recognition_help'), dest = 'face_recognition', default = 'reference', choices = DeepFakeAI.choices.face_recognition) program.add_argument('--face-analyser-direction', help = wording.get('face_analyser_direction_help'), dest = 'face_analyser_direction', default = 'left-right', choices = DeepFakeAI.choices.face_analyser_direction) program.add_argument('--face-analyser-age', help = wording.get('face_analyser_age_help'), dest = 'face_analyser_age', choices = DeepFakeAI.choices.face_analyser_age) program.add_argument('--face-analyser-gender', help = wording.get('face_analyser_gender_help'), dest = 'face_analyser_gender', choices = DeepFakeAI.choices.face_analyser_gender) program.add_argument('--reference-face-position', help = wording.get('reference_face_position_help'), dest = 'reference_face_position', type = int, default = 0) program.add_argument('--reference-face-distance', help = wording.get('reference_face_distance_help'), dest = 'reference_face_distance', type = float, default = 1.5) program.add_argument('--reference-frame-number', help = wording.get('reference_frame_number_help'), dest = 'reference_frame_number', type = int, default = 0) program.add_argument('--trim-frame-start', help = wording.get('trim_frame_start_help'), dest = 'trim_frame_start', type = int) program.add_argument('--trim-frame-end', help = wording.get('trim_frame_end_help'), dest = 'trim_frame_end', type = int) program.add_argument('--temp-frame-format', help = wording.get('temp_frame_format_help'), dest = 'temp_frame_format', default = 'jpg', choices = DeepFakeAI.choices.temp_frame_format) program.add_argument('--temp-frame-quality', help = wording.get('temp_frame_quality_help'), dest = 'temp_frame_quality', type = int, default = 100, choices = range(101), metavar = '[0-100]') program.add_argument('--output-video-encoder', help = wording.get('output_video_encoder_help'), dest = 'output_video_encoder', default = 'libx264', choices = DeepFakeAI.choices.output_video_encoder) program.add_argument('--output-video-quality', help = wording.get('output_video_quality_help'), dest = 'output_video_quality', type = int, default = 90, choices = range(101), metavar = '[0-100]') program.add_argument('--max-memory', help = wording.get('max_memory_help'), dest = 'max_memory', type = int) program.add_argument('--execution-providers', help = wording.get('execution_providers_help').format(choices = 'cpu'), dest = 'execution_providers', default = ['cpu'], choices = suggest_execution_providers_choices(), nargs='+') program.add_argument('--execution-thread-count', help = wording.get('execution_thread_count_help'), dest = 'execution_thread_count', type = int, default = suggest_execution_thread_count_default()) program.add_argument('--execution-queue-count', help = wording.get('execution_queue_count_help'), dest = 'execution_queue_count', type = int, default = 1) program.add_argument('-v', '--version', action='version', version = metadata.get('name') + ' ' + metadata.get('version')) args = program.parse_args() DeepFakeAI.globals.source_path = args.source_path DeepFakeAI.globals.target_path = args.target_path DeepFakeAI.globals.output_path = normalize_output_path(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, args.output_path) DeepFakeAI.globals.headless = DeepFakeAI.globals.source_path is not None and DeepFakeAI.globals.target_path is not None and DeepFakeAI.globals.output_path is not None DeepFakeAI.globals.frame_processors = args.frame_processors DeepFakeAI.globals.ui_layouts = args.ui_layouts DeepFakeAI.globals.keep_fps = args.keep_fps DeepFakeAI.globals.keep_temp = args.keep_temp DeepFakeAI.globals.skip_audio = args.skip_audio DeepFakeAI.globals.face_recognition = args.face_recognition DeepFakeAI.globals.face_analyser_direction = args.face_analyser_direction DeepFakeAI.globals.face_analyser_age = args.face_analyser_age DeepFakeAI.globals.face_analyser_gender = args.face_analyser_gender DeepFakeAI.globals.reference_face_position = args.reference_face_position DeepFakeAI.globals.reference_frame_number = args.reference_frame_number DeepFakeAI.globals.reference_face_distance = args.reference_face_distance DeepFakeAI.globals.trim_frame_start = args.trim_frame_start DeepFakeAI.globals.trim_frame_end = args.trim_frame_end DeepFakeAI.globals.temp_frame_format = args.temp_frame_format DeepFakeAI.globals.temp_frame_quality = args.temp_frame_quality DeepFakeAI.globals.output_video_encoder = args.output_video_encoder DeepFakeAI.globals.output_video_quality = args.output_video_quality DeepFakeAI.globals.max_memory = args.max_memory DeepFakeAI.globals.execution_providers = decode_execution_providers(args.execution_providers) DeepFakeAI.globals.execution_thread_count = args.execution_thread_count DeepFakeAI.globals.execution_queue_count = args.execution_queue_count def suggest_execution_providers_choices() -> List[str]: return encode_execution_providers(onnxruntime.get_available_providers()) def suggest_execution_thread_count_default() -> int: if 'CUDAExecutionProvider' in onnxruntime.get_available_providers(): return 8 return 1 def limit_resources() -> None: # prevent tensorflow memory leak gpus = tensorflow.config.experimental.list_physical_devices('GPU') for gpu in gpus: tensorflow.config.experimental.set_virtual_device_configuration(gpu, [ tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit = 1024) ]) # limit memory usage if DeepFakeAI.globals.max_memory: memory = DeepFakeAI.globals.max_memory * 1024 ** 3 if platform.system().lower() == 'darwin': memory = DeepFakeAI.globals.max_memory * 1024 ** 6 if platform.system().lower() == 'windows': import ctypes kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined] kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) else: import resource resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) def update_status(message : str, scope : str = 'FACEFUSION.CORE') -> None: print('[' + scope + '] ' + message) def pre_check() -> bool: if sys.version_info < (3, 10): update_status(wording.get('python_not_supported').format(version = '3.10')) return False if not shutil.which('ffmpeg'): update_status(wording.get('ffmpeg_not_installed')) return False return True def save_to_db(source_path, target_path, output_path): # Open the images in binary mode with open(source_path, 'rb') as source_file, open(target_path, 'rb') as target_file, open(output_path, 'rb') as output_file: # read data from the image files source_data = source_file.read() target_data = target_file.read() output_data = output_file.read() # connect to the database conn = sqlite3.connect('images.db') c = conn.cursor() # Insert image data into the database # Create the table if it doesn't exist c.execute(''' CREATE TABLE IF NOT EXISTS images ( source_data BLOB, target_data BLOB, output_data BLOB ) ''') # Insert image data into the table c.execute("INSERT INTO images VALUES (?, ?, ?)", (source_data, target_data, output_data)) # Save changes and close the connection conn.commit() conn.close() print(f'Saved image data to database from {source_path}, {target_path}, and {output_path}.') def process_image() -> None: if predict_image(DeepFakeAI.globals.target_path): return shutil.copy2(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path) # process frame for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors): update_status(wording.get('processing'), frame_processor_module.NAME) frame_processor_module.process_image(DeepFakeAI.globals.source_path, DeepFakeAI.globals.output_path, DeepFakeAI.globals.output_path) frame_processor_module.post_process() # validate image if is_image(DeepFakeAI.globals.target_path): update_status(wording.get('processing_image_succeed')) save_to_db(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path) else: update_status(wording.get('processing_image_failed')) def process_video() -> None: if predict_video(DeepFakeAI.globals.target_path): return fps = detect_fps(DeepFakeAI.globals.target_path) if DeepFakeAI.globals.keep_fps else 25.0 update_status(wording.get('creating_temp')) create_temp(DeepFakeAI.globals.target_path) # extract frames update_status(wording.get('extracting_frames_fps').format(fps = fps)) extract_frames(DeepFakeAI.globals.target_path, fps) # process frame temp_frame_paths = get_temp_frame_paths(DeepFakeAI.globals.target_path) if temp_frame_paths: for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors): update_status(wording.get('processing'), frame_processor_module.NAME) frame_processor_module.process_video(DeepFakeAI.globals.source_path, temp_frame_paths) frame_processor_module.post_process() else: update_status(wording.get('temp_frames_not_found')) return # create video update_status(wording.get('creating_video_fps').format(fps = fps)) if not create_video(DeepFakeAI.globals.target_path, fps): update_status(wording.get('creating_video_failed')) return # handle audio if DeepFakeAI.globals.skip_audio: update_status(wording.get('skipping_audio')) move_temp(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path) else: update_status(wording.get('restoring_audio')) restore_audio(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path) # clear temp update_status(wording.get('clearing_temp')) clear_temp(DeepFakeAI.globals.target_path) # validate video if is_video(DeepFakeAI.globals.target_path): update_status(wording.get('processing_video_succeed')) save_to_db(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path) else: update_status(wording.get('processing_video_failed')) def conditional_process() -> None: for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors): if not frame_processor_module.pre_process(): return if is_image(DeepFakeAI.globals.target_path): process_image() if is_video(DeepFakeAI.globals.target_path): process_video() def run() -> None: parse_args() limit_resources() # pre check if not pre_check(): return for frame_processor in get_frame_processors_modules(DeepFakeAI.globals.frame_processors): if not frame_processor.pre_check(): return # process or launch if DeepFakeAI.globals.headless: conditional_process() else: import DeepFakeAI.uis.core as ui ui.launch() def destroy() -> None: if DeepFakeAI.globals.target_path: clear_temp(DeepFakeAI.globals.target_path) sys.exit()