from huggingface_hub.hf_api import HfFolder from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer HfFolder.save_token('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') model_checkpoint = "facebook/bart-base" model_name = model_checkpoint.split("/")[-1] tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(f"{model_name}-finetuned-xsum") def generate_summary(question, model): inputs = tokenizer( question, padding="max_length", truncation=True, max_length=512, return_tensors="pt", ) input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) outputs = model.generate(input_ids, attention_mask=attention_mask, max_new_tokens=512) output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) return outputs, output_str summaries_before_tuning = generate_summary( "Hi I'm XXXXXXX XXXXXXX I was told by a doctor I have either pneumonia or nodularity within the right lung upper lobe if idon't respond to antibiotics.Is that poosible and can you pneumni?Penelope or I have a mass and it's probably cancer", model)[1] print(summaries_before_tuning)