import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection import torch import supervision as sv import json import requests from PIL import Image import numpy as np image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("Guy2/AirportSec-150epoch") id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'} def anylize(url): image = Image.open(requests.get(url, stream=True).raw) image = np.array(image) with torch.no_grad(): inputs = image_processor(images=image, return_tensors='pt') outputs = model(**inputs) target_sizes = torch.tensor([image.shape[:2]]) results = image_processor.post_process_object_detection( outputs=outputs, threshold=0.8, target_sizes=target_sizes )[0] # annotate detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) labels = [f"{id2label[class_id]} {confidence:.2f}" for _, _, confidence, class_id, _ in detections] box_annotator = sv.BoxAnnotator() frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) return frame output = gr.components.Image(type="numpy", label="Output Image") gr.Interface(fn = anylize, inputs="text", outputs=output).launch()