import whisper import gradio as gr import time model = whisper.load_model("base") #from transformers import pipeline #es_en_translator = pipeline("translation_es_to_en") def transcribe(audio): #time.sleep(3) # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") #lang = LANGUAGES[language] #lang=(f"Detected language: {lang}") # decode the audio options = whisper.DecodingOptions(fp16 = False)#,task= "translate") result = whisper.decode(model, mel, options) #word= result.text #trans = es_en_translator(word) #Trans = trans[0]['translation_text'] #result=f"{lang}\n{word}\n\nEnglish translation: {Trans}" return result.text gr.Interface( title='SPEECH TO TEXT', fn=transcribe, inputs=[ gr.Audio(type="filepath") # Update here ], outputs=["textbox"], live=True ).launch()