import gradio as gr import yolov5 from PIL import Image # Load YOLOv5 model model = yolov5.load("keremberke/yolov5n-garbage") # Set model parameters model.conf = 0.25 # Confidence threshold model.iou = 0.45 # IoU threshold def predict(img): # Convert image to PIL format img = Image.fromarray(img) # Perform inference results = model(img, size=640) # Show results results.save(save_dir="results/") return "results/image0.jpg" # Gradio UI iface = gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Image(), title="Garbage Object Detection", description="Upload an image and the model will detect garbage objects in it." ) iface.launch()