import os.path from typing import Optional import matplotlib.pyplot as plt import numpy as np import soundfile as sf import streamlit as st import torch import transformers from dtw import dtw from scipy import signal from transformers import AutoConfig from transformers.models.wav2vec2 import Wav2Vec2Model from datetime import datetime from random import randrange import os import psutil def play_audio(filename): audio_file = open(filename, "rb") audio_bytes = audio_file.read() st.audio(audio_bytes, format="audio/wav") def aligner(x, y): return dtw(x, y, keep_internals=True) def compute_costs(gcm): res = [[] for _ in range(gcm.N)] for i in range(gcm.index1.shape[0]): d = gcm.localCostMatrix[gcm.index1[i], gcm.index2[i]] res[gcm.index1[i]].append(d) n = [len(x) for x in res] res = [np.mean(x) for x in res] return res, n #@st.cache(show_spinner=False, hash_funcs={torch.nn.parameter.Parameter: lambda _: None}, max_entries=1) def load_wav2vec2_featurizer(model_id: str, layer: Optional[int] = None): transformers.logging.set_verbosity(transformers.logging.ERROR) model_kwargs = {} if layer is not None: model_kwargs["num_hidden_layers"] = int(layer) if layer > 0 else 0 with st.spinner("Loading model..."): model = Wav2Vec2Model.from_pretrained(model_id, **model_kwargs) model.eval() if torch.cuda.is_available(): model.cuda() # st.success("Done!") return model #@st.cache(persist=True, show_spinner=False, max_entries=3) def run(model_id, layer, filename_x, filename_y): model = load_wav2vec2_featurizer(model_id, layer) @torch.no_grad() def _featurize(path): input_values, rate = sf.read(path, dtype=np.float32) if len(input_values.shape) == 2: input_values = input_values.mean(1) if rate != 16_000: new_length = int(input_values.shape[0] / rate * 16_000) input_values = signal.resample(input_values, new_length) input_values = torch.from_numpy(input_values).unsqueeze(0) if torch.cuda.is_available(): input_values = input_values.cuda() if layer is None: hidden_states = model(input_values, output_hidden_states=True).hidden_states hidden_states = [s.squeeze(0).cpu().numpy() for s in hidden_states] return hidden_states if layer >= 0: hidden_state = model(input_values).last_hidden_state.squeeze(0).cpu().numpy() else: hidden_state = model.feature_extractor(input_values) hidden_state = hidden_state.transpose(1, 2) if layer == -1: hidden_state = model.feature_projection(hidden_state) hidden_state = hidden_state.squeeze(0).cpu().numpy() return hidden_state with st.spinner("Measuring distance..."): feats_x = _featurize(filename_x) feats_y = _featurize(filename_y) print('3. Features computed', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test gcm = aligner(feats_x, feats_y) print('4. Alignments computed', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test d = gcm.normalizedDistance print("Distance:", d) c, n = compute_costs(gcm) print('5. Costs computed', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test del model return d, c, n def main(): st.title("Word-level Neural Acoustic Distance Visualizer") st.write( "This tool visualizes pronunciation differences between two recordings of the same word. The two recordings have to be wave files containing a single spoken word. \n\n\ Choose any wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2) and select the output layer you want to use.\n\n\ To upload your own recordings select 'custom upload' in the audio file selection step. The first recording is put on the x-axis of the plot and the second one will be the reference recording for computing distance.\n\ You should already see an example plot of two sample recordings.\n\n\ This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\ Please see our paper for further details.") st.subheader("Model selection:") model_id = st.selectbox("Select the wav2vec 2.0 model you want to use:", ("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53", "facebook/wav2vec2-xls-r-300m", "other"), index=0) if model_id == "other": model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:", value="facebook/wav2vec2-large-960h", key="model") print(f"\n### Start new run\n") # test try: cfg = AutoConfig.from_pretrained(model_id) layer = st.number_input("Select the layer you want to use:", min_value=1, max_value=cfg.num_hidden_layers, value=10) except OSError: st.error( "Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2)." ) layer = None print('1. Model selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test st.subheader("Audio file selection:") filename_x = st.selectbox("Filename (x-axis):", ("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload")) if filename_x == "falling_huud_mobiel_201145.wav": filename_x = "./examples/falling_huud_mobiel_201145.wav" play_audio(filename_x) if filename_x == "falling_hood_mobiel_203936.wav": filename_x = "./examples/falling_hood_mobiel_203936.wav" play_audio(filename_x) filename_y = st.selectbox("Filename (y-axis):", ("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload")) if filename_y == "falling_huud_mobiel_201145.wav": filename_y = "./examples/falling_huud_mobiel_201145.wav" play_audio(filename_y) if filename_y == "falling_hood_mobiel_203936.wav": filename_y = "./examples/falling_hood_mobiel_203936.wav" play_audio(filename_y) if filename_x == "custom upload": filename_x = st.file_uploader("Choose a file (x-axis)", key="f_x") if filename_y == "custom upload": filename_y = st.file_uploader("Choose a file (y-axis)", key="f_y") print('2. Files selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test if filename_x is not None and filename_y is not None and layer is not None: print(f"\nX: {filename_x}\nY: {filename_y}") d, c, n = run(model_id, layer, filename_x, filename_y) # d_b, c_b, n_b = run(featurizer_b) fig, axes = plt.subplots(figsize=(4, 2.5)) print('6. Plot init', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test window_size = 9 rate = 20 x = np.arange(0, len(c) * rate, rate) offset = (window_size - 1) // 2 x_ = x[offset:-offset] # Target layer axes.plot(x, c, alpha=0.5, color="gray", linestyle="--") axes.scatter(x, c, np.array(n) * 10, color="gray") c_ = np.convolve(c, np.ones(window_size) / window_size, mode="valid") axes.plot(x_, c_) # Last layer # axes.plot(x, c_b, alpha=0.5, color="gray", linestyle="--") # axes.scatter(x, c_b, np.array(n_b) * 10, color="gray") # c_b_ = np.convolve(c_b, np.ones(window_size) / window_size, mode="valid") # axes.plot(x_, c_b_, linestyle="--") axes.set_xlabel("time (ms)") axes.set_ylabel("distance per frame") axes.hlines(y=d, xmin=0, xmax=np.max(x), linestyles="dashdot") plt.tight_layout(pad=0) plt_id = randrange(0, 10) plt.savefig("./output/plot" + str(plt_id) + ".pdf") st.pyplot(fig) main() print('7. Plot filled', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test if os.path.isfile("./output/plot.pdf"): st.caption(" Visualization of neural acoustic distances\ per frame (based on wav2vec 2.0) with the pronunciation of\ the first filename on the x-axis and distances to the pronunciation\ of second filename on the y-axis. The horizontal line represents\ the global distance value (i.e. the average of all individual frames).\ The blue continuous line represents the moving average distance based on 9 frames,\ corresponding to 180ms. As a result of the moving average, the blue line does not cover the entire duration of\ the sample. Larger bullet sizes indicate that multiple\ frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.") with open("./output/plot.pdf", "rb") as file: btn = st.download_button(label="Download plot", data=file, file_name="plot.pdf", mime="image/pdf") print('8. End', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test print(f"9. RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB") # test for name in dir(): if not name.startswith('_'): del globals()[name] import gc gc.collect()