import streamlit as st import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D import umap import pandas as pd from word2vec import * from sklearn.preprocessing import StandardScaler import plotly.express as px from sklearn.manifold import TSNE def make_3d_plot_tSNE(vectors_list, target_word, time_slice_model): """ Turn list of 100D vectors into a 3D plot using t-SNE and Plotly. List structure: [(word, model_name, vector, cosine_sim)] """ word = target_word # Load model model = load_word2vec_model(f'models/{time_slice_model}.model') # Extract vectors and names from ./3d_models/{time_slice_model}.model all_vectors = {} with open(f'./3d_models/{time_slice_model}.model', 'rb') as f: result_with_names = pickle.load(f) for word, vector in result_with_names: all_vectors[word] = vector # Only keep the vectors that are in vectors_list and their cosine similarities result_with_names = [(word, all_vectors[word], cosine_sim) for word, _, _, cosine_sim in vectors_list] # Create DataFrame from the transformed vectors df = pd.DataFrame(result_with_names, columns=['word', '3d_vector', 'cosine_sim']) # Sort dataframe by cosine_sim df = df.sort_values(by='cosine_sim', ascending=False) x = df['3d_vector'].apply(lambda v: v[0]) y = df['3d_vector'].apply(lambda v: v[1]) z = df['3d_vector'].apply(lambda v: v[2]) # Plot fig = px.scatter_3d(df, x=x, y=y, z=z, text='word', color='cosine_sim', color_continuous_scale='Reds') fig.update_traces(marker=dict(size=5)) fig.update_layout(title=f'3D plot of nearest neighbours to {target_word}') return fig, df