import requests import random import time import pandas as pd import gradio as gr import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline import torch def read3(num_selected_former): fname = 'data3_convai2_inferred.txt' with open(fname, encoding='utf-8') as f: content = f.readlines() index_selected = random.randint(0,len(content)/2-1) while index_selected == num_selected_former: index_selected = random.randint(0,len(content)/2-1) text = eval(content[index_selected*2]) interpretation = eval(content[int(index_selected*2+1)]) min_len = 5 tokens = [i[0] for i in interpretation] tokens = tokens[1:-1] while len(tokens) <= min_len or '\\' in text['text'] or '//' in text['text']: index_selected = random.randint(0,len(content)/2-1) text = eval(content[int(index_selected*2)]) res_tmp = [(i, 0) for i in text['text'].split(' ')] res = {"original": text['text'], "interpretation": res_tmp} return res, index_selected def func3(num_selected, human_predict, num1, num2, user_important): chatbot = [] # num1: Human score; num2: AI score fname = 'data3_convai2_inferred.txt' with open(fname) as f: content = f.readlines() text = eval(content[int(num_selected*2)]) interpretation = eval(content[int(num_selected*2+1)]) if text['binary_label'] == 1: golden_label = int(5 * (1 - text['binary_score'])) else: golden_label = int(5 * (1 + text['binary_score'])) # (START) off-the-shelf version -- slow at the beginning # Load model directly # Use a pipeline as a high-level helper device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device) output = classifier([text['text']]) print(output) out = output[0] # (END) off-the-shelf version if out['label'] == 'Female': ai_predict = int(10 * out['score']) else: ai_predict = 10 - int(10 * out['score']) user_select = "You focused on " flag_select = False if user_important == "": user_select += "nothing. Interesting! " else: user_select += "'" + user_important + "'. " # for i in range(len(user_marks)): # if user_marks[i][1] != None and h1[i][0] not in ["P", "N"]: # flag_select = True # user_select += "'" + h1[i][0] + "'" # if i == len(h1) - 1: # user_select += ". " # else: # user_select += ", " # if not flag_select: # user_select += "nothing. Interesting! " user_select += "Wanna see how the AI made the guess? Click here. β¬ οΈ" if golden_label > 6: gender = ' (female)' elif golden_label < 4: gender = ' (male)' else: gender = ' (neutral)' if abs(golden_label - human_predict) <= 2 and abs(golden_label - ai_predict) <= 2: chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Congratulations! π Both of you get the correct answer!", user_select)) num1 += 1 num2 += 1 elif abs(golden_label - human_predict) > 2 and abs(golden_label - ai_predict) > 2: chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Sorry.. No one gets the correct answer. But nice try! π", user_select)) elif abs(golden_label - human_predict) <= 2 and abs(golden_label - ai_predict) > 2: chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Great! π You are closer to the answer and better than AI!", user_select)) num1 += 1 else: chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Sorry.. AI wins in this round.", user_select)) num2 += 1 # tot_scores = ''' ###
π€ Machine ''' + str(int(num2)) + ''' VS ''' + str(int(num1)) + ''' Human π¨π©
''' # tot_scores = ''' ####Today's Scores:
# ####π€ Machine ''' + str(int(num2)) + ''' VS ''' + str(int(num1)) + ''' Human π
''' tot_scores = ''' ####Today's Scores: π€ Machine ''' + str(int(num2)) + ''' VS ''' + str(int(num1)) + ''' Human π
''' return ai_predict, chatbot, num1, num2, tot_scores def interpre3(num_selected): fname = 'data3_convai2_inferred.txt' tokenizer = AutoTokenizer.from_pretrained("padmajabfrl/Gender-Classification") with open(fname) as f: content = f.readlines() text = eval(content[int(num_selected*2)]) interpretation = eval(content[int(num_selected*2+1)]) print(interpretation) encodings = tokenizer(text['text'], return_offsets_mapping=True) print(encodings['offset_mapping']) is_subword = [False, False] for i in range(2, len(encodings['offset_mapping'])): if encodings['offset_mapping'][i][0] == encodings['offset_mapping'][i-1][1]: is_subword.append(True) else: is_subword.append(False) print(is_subword) interpretation_combined = [] index_tmp = 0 while index_tmp < (len(interpretation) - 1): if not is_subword[index_tmp+1]: interpretation_combined.append(interpretation[index_tmp]) index_tmp += 1 else: text_combined = interpretation[index_tmp][0] score_combinded = interpretation[index_tmp][1] length = 1 while is_subword[index_tmp+length]: text_combined += interpretation[index_tmp+length][0] score_combinded += interpretation[index_tmp+length][1] length += 1 interpretation_combined.append((text_combined, score_combinded/length)) index_tmp += length interpretation_combined.append(('', 0.0)) print(interpretation_combined) res = {"original": text['text'], "interpretation": interpretation_combined} # pos = [] # neg = [] # res = [] # for i in interpretation: # if i[1] > 0: # pos.append(i[1]) # elif i[1] < 0: # neg.append(i[1]) # else: # continue # median_pos = np.median(pos) # median_neg = np.median(neg) # res.append(("P", "+")) # res.append(("/", None)) # res.append(("N", "-")) # res.append(("Review:", None)) # for i in interpretation: # if i[1] > median_pos: # res.append((i[0], "+")) # elif i[1] < median_neg: # res.append((i[0], "-")) # else: # res.append((i[0], None)) return res def func3_written(text_written, human_predict): chatbot = [] # num1: Human score; num2: AI score # (START) off-the-shelf version # tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") # model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device) tokenizer = AutoTokenizer.from_pretrained("padmajabfrl/Gender-Classification") output = classifier([text_written]) print(output) out = output[0] # (END) off-the-shelf version if out['label'] == 'Female': ai_predict = int(10 * out['score']) else: ai_predict = 10 - int(10 * out['score']) if abs(ai_predict - human_predict) <= 2: chatbot.append(("AI gives it a close score! π", "β¬ οΈ Feel free to try another one! This time letβs see if you can trick the AI into giving a wrong rating. β¬ οΈ")) else: chatbot.append(("AI thinks in a different way from human. π", "β¬ οΈ Feel free to try another one! β¬ οΈ")) import shap gender_classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", return_all_scores=True, device=device) explainer = shap.Explainer(gender_classifier) shap_values = explainer([text_written]) interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) encodings = tokenizer(text_written, return_offsets_mapping=True) print(encodings['offset_mapping']) is_subword = [False, False] for i in range(2, len(encodings['offset_mapping'])): if encodings['offset_mapping'][i][0] == encodings['offset_mapping'][i-1][1]: is_subword.append(True) else: is_subword.append(False) print(is_subword) interpretation_combined = [] index_tmp = 0 while index_tmp < (len(interpretation) - 1): if not is_subword[index_tmp+1]: interpretation_combined.append(interpretation[index_tmp]) index_tmp += 1 else: text_combined = interpretation[index_tmp][0] score_combinded = interpretation[index_tmp][1] length = 1 while is_subword[index_tmp+length]: text_combined += interpretation[index_tmp+length][0] score_combinded += interpretation[index_tmp+length][1] length += 1 interpretation_combined.append((text_combined, score_combinded/length)) index_tmp += length interpretation_combined.append(('', 0.0)) print(interpretation_combined) res = {"original": text_written, "interpretation": interpretation_combined} print(res) return res, ai_predict, chatbot