File size: 7,814 Bytes
5664dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
#! /usr/bin/env python
import cv2
import numpy as np
import scipy.spatial as spatial
import logging
## 3D Transform
def bilinear_interpolate(img, coords):
""" Interpolates over every image channel
http://en.wikipedia.org/wiki/Bilinear_interpolation
:param img: max 3 channel image
:param coords: 2 x _m_ array. 1st row = xcoords, 2nd row = ycoords
:returns: array of interpolated pixels with same shape as coords
"""
int_coords = np.int32(coords)
x0, y0 = int_coords
dx, dy = coords - int_coords
# 4 Neighour pixels
q11 = img[y0, x0]
q21 = img[y0, x0 + 1]
q12 = img[y0 + 1, x0]
q22 = img[y0 + 1, x0 + 1]
btm = q21.T * dx + q11.T * (1 - dx)
top = q22.T * dx + q12.T * (1 - dx)
inter_pixel = top * dy + btm * (1 - dy)
return inter_pixel.T
def grid_coordinates(points):
""" x,y grid coordinates within the ROI of supplied points
:param points: points to generate grid coordinates
:returns: array of (x, y) coordinates
"""
xmin = np.min(points[:, 0])
xmax = np.max(points[:, 0]) + 1
ymin = np.min(points[:, 1])
ymax = np.max(points[:, 1]) + 1
return np.asarray([(x, y) for y in range(ymin, ymax)
for x in range(xmin, xmax)], np.uint32)
def process_warp(src_img, result_img, tri_affines, dst_points, delaunay):
"""
Warp each triangle from the src_image only within the
ROI of the destination image (points in dst_points).
"""
roi_coords = grid_coordinates(dst_points)
# indices to vertices. -1 if pixel is not in any triangle
roi_tri_indices = delaunay.find_simplex(roi_coords)
for simplex_index in range(len(delaunay.simplices)):
coords = roi_coords[roi_tri_indices == simplex_index]
num_coords = len(coords)
out_coords = np.dot(tri_affines[simplex_index],
np.vstack((coords.T, np.ones(num_coords))))
x, y = coords.T
result_img[y, x] = bilinear_interpolate(src_img, out_coords)
return None
def triangular_affine_matrices(vertices, src_points, dst_points):
"""
Calculate the affine transformation matrix for each
triangle (x,y) vertex from dst_points to src_points
:param vertices: array of triplet indices to corners of triangle
:param src_points: array of [x, y] points to landmarks for source image
:param dst_points: array of [x, y] points to landmarks for destination image
:returns: 2 x 3 affine matrix transformation for a triangle
"""
ones = [1, 1, 1]
for tri_indices in vertices:
src_tri = np.vstack((src_points[tri_indices, :].T, ones))
dst_tri = np.vstack((dst_points[tri_indices, :].T, ones))
mat = np.dot(src_tri, np.linalg.inv(dst_tri))[:2, :]
yield mat
def warp_image_3d(src_img, src_points, dst_points, dst_shape, dtype=np.uint8):
rows, cols = dst_shape[:2]
result_img = np.zeros((rows, cols, 3), dtype=dtype)
delaunay = spatial.Delaunay(dst_points)
tri_affines = np.asarray(list(triangular_affine_matrices(
delaunay.simplices, src_points, dst_points)))
process_warp(src_img, result_img, tri_affines, dst_points, delaunay)
return result_img
## 2D Transform
def transformation_from_points(points1, points2):
points1 = points1.astype(np.float64)
points2 = points2.astype(np.float64)
c1 = np.mean(points1, axis=0)
c2 = np.mean(points2, axis=0)
points1 -= c1
points2 -= c2
s1 = np.std(points1)
s2 = np.std(points2)
points1 /= s1
points2 /= s2
U, S, Vt = np.linalg.svd(np.dot(points1.T, points2))
R = (np.dot(U, Vt)).T
return np.vstack([np.hstack([s2 / s1 * R,
(c2.T - np.dot(s2 / s1 * R, c1.T))[:, np.newaxis]]),
np.array([[0., 0., 1.]])])
def warp_image_2d(im, M, dshape):
output_im = np.zeros(dshape, dtype=im.dtype)
cv2.warpAffine(im,
M[:2],
(dshape[1], dshape[0]),
dst=output_im,
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output_im
## Generate Mask
def mask_from_points(size, points,erode_flag=1):
radius = 10 # kernel size
kernel = np.ones((radius, radius), np.uint8)
mask = np.zeros(size, np.uint8)
cv2.fillConvexPoly(mask, cv2.convexHull(points), 255)
if erode_flag:
mask = cv2.erode(mask, kernel,iterations=1)
return mask
## Color Correction
def correct_colours(im1, im2, landmarks1):
COLOUR_CORRECT_BLUR_FRAC = 0.75
LEFT_EYE_POINTS = list(range(42, 48))
RIGHT_EYE_POINTS = list(range(36, 42))
blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm(
np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
blur_amount = int(blur_amount)
if blur_amount % 2 == 0:
blur_amount += 1
im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
# Avoid divide-by-zero errors.
im2_blur = im2_blur.astype(int)
im2_blur += 128*(im2_blur <= 1)
result = im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64)
result = np.clip(result, 0, 255).astype(np.uint8)
return result
## Copy-and-paste
def apply_mask(img, mask):
""" Apply mask to supplied image
:param img: max 3 channel image
:param mask: [0-255] values in mask
:returns: new image with mask applied
"""
masked_img=cv2.bitwise_and(img,img,mask=mask)
return masked_img
## Alpha blending
def alpha_feathering(src_img, dest_img, img_mask, blur_radius=15):
mask = cv2.blur(img_mask, (blur_radius, blur_radius))
mask = mask / 255.0
result_img = np.empty(src_img.shape, np.uint8)
for i in range(3):
result_img[..., i] = src_img[..., i] * mask + dest_img[..., i] * (1-mask)
return result_img
def check_points(img,points):
# Todo: I just consider one situation.
if points[8,1]>img.shape[0]:
logging.error("Jaw part out of image")
else:
return True
return False
def face_swap(src_face, dst_face, src_points, dst_points, dst_shape, dst_img, args, end=48):
h, w = dst_face.shape[:2]
## 3d warp
warped_src_face = warp_image_3d(src_face, src_points[:end], dst_points[:end], (h, w))
## Mask for blending
mask = mask_from_points((h, w), dst_points)
mask_src = np.mean(warped_src_face, axis=2) > 0
mask = np.asarray(mask * mask_src, dtype=np.uint8)
## Correct color
if args == "correct color":
warped_src_face = apply_mask(warped_src_face, mask)
dst_face_masked = apply_mask(dst_face, mask)
warped_src_face = correct_colours(dst_face_masked, warped_src_face, dst_points)
## 2d warp
if args == "warp_2d":
unwarped_src_face = warp_image_3d(warped_src_face, dst_points[:end], src_points[:end], src_face.shape[:2])
warped_src_face = warp_image_2d(unwarped_src_face, transformation_from_points(dst_points, src_points),
(h, w, 3))
mask = mask_from_points((h, w), dst_points)
mask_src = np.mean(warped_src_face, axis=2) > 0
mask = np.asarray(mask * mask_src, dtype=np.uint8)
## Shrink the mask
kernel = np.ones((10, 10), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
##Poisson Blending
r = cv2.boundingRect(mask)
center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2)))
output = cv2.seamlessClone(warped_src_face, dst_face, mask, center, cv2.NORMAL_CLONE)
x, y, w, h = dst_shape
dst_img_cp = dst_img.copy()
dst_img_cp[y:y + h, x:x + w] = output
return dst_img_cp
|