import time
from threading import Thread
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer
from datasets import load_dataset
import spaces
import pandas as pd
rekaeval = "RekaAI/VibeEval"
dataset = load_dataset(rekaeval, split="test")
df = pd.DataFrame(dataset)
df = df[['media_url', 'prompt']]
df_markdown = df.copy()
# Function to convert URL to HTML img tag
def mediaurl_to_img_tag(url):
return f''
# Apply the function to the DataFrame column
df_markdown['media_url'] = df_markdown['media_url'].apply(mediaurl_to_img_tag)
PLACEHOLDER = """
LLaVA-Llama3-8B With REKA Vibe-Eval
Test your Vision LLMs with new Vibe-Evals from REKA
"""
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval"
description="Evaluate LLaVA-Llama3-8B on . Click on a row in the Eval dataset and start chatting about it."
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model.to("cuda:0")
model.generation_config.eos_token_id = 128009
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
tmp = '''with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval",
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)'''
with gr.Blocks() as demo:
gr.HTML(f'{title}
')
gr.HTML(f'{description}')
with gr.Row():
with gr.Column():
gr.ChatInterface(
fn=bot_streaming,
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
with gr.Column():
with gr.Row():
b1 = gr.Button("Previous", interactive=False)
b2 = gr.Button("Next")
reka = gr.Dataframe(value=df_markdown[0:5], label='Reka-Vibe-Eval', datatype=['markdown', 'str'], wrap=False, interactive=False, height=700)
num_start = gr.Number(visible=False, value=0)
num_end = gr.Number(visible=False, value=4)
#chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
#bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
#bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
#chatbot.like(print_like_dislike, None, None)
def get_example(reka, start, evt: gr.SelectData):
print(f'evt.value = {evt.value}')
print(f'evt.index = {evt.index}')
x = evt.index[0] + start
image = df.iloc[x, 0]
prompt = df.iloc[x, 1]
print(f'image = {image}')
print(f'prompt = {prompt}')
example = {"text": prompt, "files": [image]}
return example
def display_next(dataframe, end):
print(f'initial value of end = {end}')
start = (end or dataframe.index[-1]) + 1
end = start + 4
df_images = df_markdown.loc[start:end]
print(f'returned value of end = {end}')
print(f'returned value of start = {start}')
return df_images, end, start, gr.Button(interactive=True)
def display_previous(dataframe, start):
print(f'initial value of start = {start}')
end = (start or dataframe.index[-1])
start = end - 5
df_images = df_markdown.loc[start:end]
print(f'returned value of start = {start}')
print(f'returned value of end = {end}')
return df_images, end, start, gr.Button(interactive=False) if start==0 else gr.Button(interactive=True)
reka.select(get_example, [reka,num_start], chat_input, show_progress="hidden")
b2.click(fn=display_next, inputs= [reka, num_end ], outputs=[reka, num_end, num_start, b1], api_name="next_rows", show_progress=False)
b1.click(fn=display_previous, inputs= [reka, num_start ], outputs=[reka, num_end, num_start, b1], api_name="previous_rows")
demo.queue()
demo.launch(debug=True)