import time from threading import Thread import gradio as gr import torch from PIL import Image from transformers import AutoProcessor, LlavaForConditionalGeneration from transformers import TextIteratorStreamer from datasets import load_dataset import spaces import pandas as pd rekaeval = "RekaAI/VibeEval" dataset = load_dataset(rekaeval, split="test") df = pd.DataFrame(dataset) df = df[['media_url', 'prompt']] df_markdown = df.copy() # Function to convert URL to HTML img tag def mediaurl_to_img_tag(url): return f'' # Apply the function to the DataFrame column df_markdown['media_url'] = df_markdown['media_url'].apply(mediaurl_to_img_tag) PLACEHOLDER = """

LLaVA-Llama3-8B With REKA Vibe-Eval

Test your Vision LLMs with new Vibe-Evals from REKA

""" title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval" description="Evaluate LLaVA-Llama3-8B on . Click on a row in the Eval dataset and start chatting about it." model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" processor = AutoProcessor.from_pretrained(model_id) model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ) model.to("cuda:0") model.generation_config.eos_token_id = 128009 @spaces.GPU def bot_streaming(message, history): print(message) if message["files"]: # message["files"][-1] is a Dict or just a string if type(message["files"][-1]) == dict: image = message["files"][-1]["path"] else: image = message["files"][-1] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0]) == tuple: image = hist[0][0] try: if image is None: # Handle the case where image is None gr.Error("You need to upload an image for LLaVA to work.") except NameError: # Handle the case where 'image' is not defined at all gr.Error("You need to upload an image for LLaVA to work.") prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # print(f"prompt: {prompt}") image = Image.open(image) inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # print(f"text_prompt: {text_prompt}") buffer = "" time.sleep(0.5) for new_text in streamer: # find <|eot_id|> and remove it from the new_text if "<|eot_id|>" in new_text: new_text = new_text.split("<|eot_id|>")[0] buffer += new_text # generated_text_without_prompt = buffer[len(text_prompt):] generated_text_without_prompt = buffer # print(generated_text_without_prompt) time.sleep(0.06) # print(f"new_text: {generated_text_without_prompt}") yield generated_text_without_prompt chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) tmp = '''with gr.Blocks(fill_height=True, ) as demo: gr.ChatInterface( fn=bot_streaming, title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval", examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, {"text": "How to make this pastry?", "files": ["./baklava.png"]}], description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", stop_btn="Stop Generation", multimodal=True, textbox=chat_input, chatbot=chatbot, )''' with gr.Blocks() as demo: gr.HTML(f'

{title}

') gr.HTML(f'
{description}
') with gr.Row(): with gr.Column(): gr.ChatInterface( fn=bot_streaming, stop_btn="Stop Generation", multimodal=True, textbox=chat_input, chatbot=chatbot, ) with gr.Column(): with gr.Row(): b1 = gr.Button("Previous", interactive=False) b2 = gr.Button("Next") reka = gr.Dataframe(value=df_markdown[0:5], label='Reka-Vibe-Eval', datatype=['markdown', 'str'], wrap=False, interactive=False, height=700) num_start = gr.Number(visible=False, value=0) num_end = gr.Number(visible=False, value=4) #chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) #bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") #bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) #chatbot.like(print_like_dislike, None, None) def get_example(reka, start, evt: gr.SelectData): print(f'evt.value = {evt.value}') print(f'evt.index = {evt.index}') x = evt.index[0] + start image = df.iloc[x, 0] prompt = df.iloc[x, 1] print(f'image = {image}') print(f'prompt = {prompt}') example = {"text": prompt, "files": [image]} return example def display_next(dataframe, end): print(f'initial value of end = {end}') start = (end or dataframe.index[-1]) + 1 end = start + 4 df_images = df_markdown.loc[start:end] print(f'returned value of end = {end}') print(f'returned value of start = {start}') return df_images, end, start, gr.Button(interactive=True) def display_previous(dataframe, start): print(f'initial value of start = {start}') end = (start or dataframe.index[-1]) start = end - 5 df_images = df_markdown.loc[start:end] print(f'returned value of start = {start}') print(f'returned value of end = {end}') return df_images, end, start, gr.Button(interactive=False) if start==0 else gr.Button(interactive=True) reka.select(get_example, [reka,num_start], chat_input, show_progress="hidden") b2.click(fn=display_next, inputs= [reka, num_end ], outputs=[reka, num_end, num_start, b1], api_name="next_rows", show_progress=False) b1.click(fn=display_previous, inputs= [reka, num_start ], outputs=[reka, num_end, num_start, b1], api_name="previous_rows") demo.queue() demo.launch(debug=True)