import os import gc import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig from datasets import load_dataset from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training from trl import DPOTrainer import bitsandbytes as bnb import wandb # Defined in the secrets tab in Google Colab # wb_token = "2eae619e4d6f0caef6408a6dc869dd0bfa6595f6" hf_token = os.getenv("hf_token") wb_token = os.getenv("wb_token") wandb.login(key=wb_token) # Fine-tune model with DPO import gradio as gr def greet(traindata_,output_repo): model_name = "HuggingFaceH4/zephyr-7b-gemma-v0.1" # new_model = "Gopal2002/zehpyr-gemma-dpo-finetune" new_model = output_repo try: tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False # Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) # specify how to quantize the model quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) device_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None # Step 1: load the base model (Mistral-7B in our case) in 4-bit model_kwargs = dict( # attn_implementation="flash_attention_2", # set this to True if your GPU supports it (Flash Attention drastically speeds up model computations) torch_dtype="auto", use_cache=False, # set to False as we're going to use gradient checkpointing device_map=device_map, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs) # Training arguments peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=200, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) #load the dataset dataset = load_dataset(traindata_, split='train') # dataset = load_dataset('Gopal2002/zephyr-gemma-finetune-dpo', split='train') # Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model=None, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=2048, max_length=1536, ) dpo_trainer.train() return "Training Done" except Exception as e: return str(e) with gr.Blocks() as demo: traindata_ = gr.Textbox(label="Enter training data repo") output_repo = gr.Textbox(label="Enter output model path") output = gr.Textbox(label="Output Box") greet_btn = gr.Button("TRAIN") greet_btn.click(fn=greet, inputs=[traindata_,output_repo], outputs=output, api_name="greet") demo.launch()